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(Communicated by K6saku YOSIDA, M. J. A., Nov. 12, 1982)

1. Statement of result. In this paper we consider nonlinear
wave equations of the following type"
(1.1) 4[u]---- [u+F(u, Du, DxDu)-O, for t e [0, oo), x e R,
with the initial conditions"

(1.2) u(0, x) =(x),
3u(1.3) (0, X)--4(X), :[or x e Rn.

Here the symbols D and D denote (3/3x, ., 3/3x) and (3/3t, D)
respectively, and [3 denotes the wave operator (3/3t)-.1(/3x).
We sometimes use the variable x0 in place o2 t. The 2unction F o2
(1.1) is a unction o variable.s =(; 2, i=0, ..., n; 2, i, ]--0, ..., n,
i+]O) and it is o class C in a neighborhood o the origin -0.
Moreover we assume that

3F(A) F(0) -3-- (0) O.

The initial data and are supposed to belong to
W(R) (-]__0W(R),

here WR( ) is the Sobolev space o2 order m.
Then our result is
Theorem. Suppose that the space dimension n is greater than

or equal to 12 and that the condition A is satisfied. Then there exist
an integer N and a small constant 0 such that for any initial data
satisfying

]lT,]l,,+[],’]l,v<r] and [[7,1[.,+l[[l,v<r],
the problem (1.1).-(1.3) has a unique solution in C([0, oo)X R).

Remark. Our problem differs rom that o Klainerman [3] in the
point that our F depends on 2 as well as 2, 2,. The essential difference
appears in the energy estimates 2or the linearized problems which
play an important role in the iteration process.

Hereater we use 2ollowing aorms 2or a unction f(t, x)defined
on [0, oo)xR.

f ll,(t): f(t, )11,
fl(t):llfll.,(t) and Ilfll(t):llflt,(t),
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moreover

f I1,,-- supto,)(1 +t)llfll,(t);
fl, f li,L, and

We introduce some abbreviations.
=(2; 2,, i=0, ..., n; ,, i, ]=0, n, i+]>O),
=(, 0o),
--(1 D,, i--O,..., n; D,, i, ]=0,..., n, i+]>O),
E--(Z, D00),

and or example a differential operator b,(t, x). denotes

b,(t,x) o+ b,(t,x) +b(t,x).
,=o,..., xx x+j>0

2. Energy estimates. We derive the energy estimates for solu-
tions of the linear hyperbolic equations"

zv= g(t, x), for t e [0, ), x e R,[v/ b,(t, x).

v(0, x)= v--(0, x) 0, for x

Proposition. Suppose that v e C([0, ), W(R0), g e C([0, c),
W(Rn)) and b e C’([0, c), .(Rn)). Moreover we make the following
assumptions"
(2.1) Iblo,o3/(4n),

3 b <1,(2.2) bl/,,0, bel+, and - +,,0
for some positive constant . Then we ha,e

(2.3) t[Dv] o(t)

_
C(n, )

do
(2.4)

and

(2.5)

for m>_2.

{ll g ilm(V) + b,im(V) v 0(r)}dr,
j0

Remark. Our condition about the space dimensien is more re.
strictive than that of [3]. It is because o the ollowing 2acts.

(a) The condition (2.2) is more severe than the similar one in [3].
(3) We can not evaluate v IIo,o because we evaluate v Ilo(t) by the

integral 0 IlOv/Otllo(r)dr.

Sketch of the proof of Proposition. Let E(v) be the energy of
v, i.e.,

i,j=O,...,n i Xj
i+j>O

Then by the standard method we have the following estimate:
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3 b o(t)}E(v) + ]b]o I: E(v)(v)dr](2.6) E(v)<_C(n)[llgllot)+(lblt)-t-
In order to evaluate E(v) we use the following

Lemma. Suppose that , and r are C functions defined on [0, eo)
and are non-negative and that a C function f satisfies the following
inequality"

df (t)<(t)+fl(t).f(t)_t_r(t) i f(r)dr, for t>O,
dt

f(0)=0.
Then

We omit the proof o Lemma and continue the proof of Propo-
sition. Applying the lemma to the inequality (2.6), we have

E(v) <_C(n) : llg,lo()dr

0 blo(r)+.lb]o(r)}d]

Condition (2.2) yields that E(v)C(n, s).[t, Ilgll0(r)dr. We obtain (2.3)

since I]Dvll0(t) is equivalent to the energy E(v)(t). This equivalence
follows from the condition (2.1). Estimates (2.4) and (2.5) can be
derived by usual arguments.

3. Outline of the proof of Theorem. We make the solution
by the iteration method and use the same iteration scheme as that of
[31. First we review it briefly.

The 0th approximation u0 is the solution of the following.

u0=0, for t e [0, ), x e R,
0 uo(O, )=(), for x e Ruo(O, )= (),

Suppose u, ]=0, ., p and , ]=0, ., p-1 are defined. Then we
define as the solution of the following equation"

+ OF (S%).=g, for t e [0, ), x e R,
(3.1) 05

(0, x)=O(0, x) 0, for x e R,
where S, ]=0, 1, 2,... are the smoothing operators used in [3] and
the functions g, ]=0, 1, 2, are defined as follows.
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gj= -Sej_I-(S-S_,)( e + [u0]),
e F(u ) F(uj)-- F (S,2u). Zi.

We define u to be u+.
We derive inductively the ollowing estimates or each p

=0, 1, 2, ..
(3.2.p) ,0-+’, for0,0m,

II[]_,-+, for 0m.
Here =(--1)/, 0= and is a small positive constant depending
on the function F. And , and are constants satisfying the fol-
lowing inequalities"
(3.3)
(3.4)

(3.5)

k-l-2_z,

Remark. We use these inequalities in the proof of (3.2). And
such constants exist if and only if the space dimension n is greater
than or equal to 12.

Once the estimate (3.2) is obtained, it is easy to check that the
series ;=0ap converges in the space C([0, )xR) and that the func-
tion u=u0+pL0a; is the solution of the problem (1.1)-(1.3). So we
only give the outline of the proof of (3.2).

Suppose (3.2.j), ]=0, ...,/9 hold.
can prove

t,p+

-1-+m

Then using (3.3) and (3.4), we

for 0_k, 0_m,
for 0___ k, 0

_
m,

for 0_m, --1--+em_.
We pply the energy estimates in 2 to the problem (3.1). Then the
following Lz estimates are obtained.
(3.7) ;+, l,m < ’2t01-2/m’p+ for 0<m._
Since fl_2, the second part of (3.2.p+ 1) follows from (3.7). The decay
estimates in [3] and the inequalities (3.5) and (3.6) yield the first part
of (3.2.p+1). Therefore we obtain (3.2.p+1).
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