106. Smooth Global Solutions for the One-Dimensional Equations in Magnetohydrodynamics

By Shuichi KAWASHIMA*) and Mari OKADA**)

(Communicated by Kôsaku YOSIDA, M. J. A., Nov. 12, 1982)

§1. Introduction. The motion of electrically conducting fluids on one space coordinate is described by the equations in Lagrangian representation ([1]):

(1)
$$\begin{cases} (1/\rho)_{\iota} - u_{x} = 0, \\ u_{\iota} + (p + |B|^{2}/2\mu_{0})_{x} = (\nu\rho u_{x})_{x}, \\ \theta_{\iota} + (\theta p_{\theta}/e_{\theta})u_{x} = (1/e_{\theta})\{(\kappa\rho\theta_{x})_{x} + \nu\rho u_{x}^{2} + \mu\rho |v_{x}|^{2} + (\rho/\sigma\mu_{0}^{2}) |B_{x}|^{2}\}, \\ (B/\rho)_{\iota} - (\overline{B}^{1}v)_{x} = \{(\rho/\sigma\mu_{0})B_{x}\}_{x}. \end{cases}$$

Here $\rho > 0$, $u = (u^1, u^2, u^3) \in \mathbb{R}^3$, $\theta > 0$ and $B = (\overline{B}^1, B^2, B^3) \in \mathbb{R}^3$ represent the mass density, the velocity, the absolute temperature and the magnetic induction, where we write $u = u^1$, $v = (u^2, u^3)$, $B = (B^2, B^3)$, and \overline{B}^1 is a constant.

We assume that the pressure p and the internal energy e are smoothly related to ρ and θ by the equations of state

(2) $p_{\rho} > 0$, $e_{\theta} > 0$, $de = \theta dS - pd(1/\rho)$, where $S = S(\rho, \theta)$ is the entropy; the coefficients of viscosity μ, ν , the coefficient of heat conductivity κ and the coefficient of electrical resistivity $1/\sigma$ (σ : the coefficient of electrical conductivity) are all smooth functions of ρ and θ , and are positive or identically zero; μ_0 is the magnetic permeability, now a positive constant.

In this paper, we seek smooth solutions of (1) in a small neighborhood of a constant state $(\rho, u, \theta, B) = (\overline{\rho}, 0, \overline{\theta}, \overline{B})$ where $\overline{\rho} > 0$, $\overline{\theta} > 0$ and $\overline{B} \in \mathbb{R}^2$ are arbitrary fixed constants. To obtain the a priori estimates for the solutions, we use the following energy form ([4]):

 $\mathcal{E} = e - \bar{e} + \bar{p}(1/\rho - 1/\bar{\rho}) - \bar{\theta}(S - \bar{S}) + |\boldsymbol{u}|^2/2 + |B - \bar{B}|^2/2\mu_0\rho$, where $\bar{e} = e(\bar{\rho}, \bar{\theta})$ and so on. Note that if $|\rho - \bar{\rho}, \theta - \bar{\theta}|$ is small, \mathcal{E} is equivalent to the quadratic form $|\rho - \bar{\rho}, \boldsymbol{u}, \theta - \bar{\theta}, B - \bar{B}|^2$. This is based on the strict convexity of the internal energy e as a function of $1/\rho$ and S.

From (1) and (2), we have the energy conservation law: (3) $(e+|u|^2/2+|B|^2/2\mu_0\rho)_{\iota}+\{(p+|B|^2/2\mu_0)u-(\overline{B}^1B/\mu_0)\cdot v\}_x$ $=\{\nu\rho uu_x+\mu\rho v\cdot v_x+\kappa\rho\theta_x+(\rho/\sigma\mu_0^2)B\cdot B_x\}_x,$

and the equation of entropy:

^{*)} Department of Mathematics, Nara Women's University.

^{**)} Department of Mathematics, Kyoto University.

(4) $S_t = \{(\kappa \rho/\theta)\theta_x\}_x + (1/\theta)\{\nu \rho u_x^2 + \mu \rho |v_x|^2 + (\kappa \rho/\theta)\theta_x^2 + (\rho/\sigma \mu_0^2) |B_x|^2\}.$ Using (1), (3) and (4), we have the identity for \mathcal{E} which plays an important role in the present paper:

$$\begin{array}{ll} (5) \quad \mathcal{E}_{t} + \{(p+|B|^{2}/2\mu_{0}-\overline{p}-|\overline{B}|^{2}/2\mu_{0})u - (\overline{B}^{1}(B-\overline{B})/\mu_{0}) \cdot v\}_{x} \\ \quad + (\overline{\theta}/\theta)\{\nu\rho u_{x}^{2} + \mu\rho \,|\, v_{x}|^{2} + (\kappa\rho/\theta)\theta_{x}^{2} + (\rho/\sigma\mu_{0}^{2})\,|B_{x}|^{2}\} \\ \quad = \{\nu\rho u u_{x} + \mu\rho v \cdot v_{x} + (1-\overline{\theta}/\theta)\kappa\rho\theta_{x} + (\rho/\sigma\mu_{0}^{2})(B-\overline{B}) \cdot B_{x}\}_{x}. \end{array}$$

§ 2. Results and remarks. We consider the system (1) with the initial data:

(6)
$$\begin{cases} (\rho, u, \theta, B)(0, x) = (\rho_0, u_0, \theta_0, B_0)(x), & x \in \mathbb{R}^1, \\ \inf \{\rho_0(x), \theta_0(x); x \in \mathbb{R}^1\} > 0, \end{cases}$$

where $u_0 = (u_0, v_0)$. We set up two cases: $0 < \sigma < \infty$ (finitely conducting) and $\sigma = \infty$ (perfectly conducting). In each case there are the following four cases:

(i) $\mu, \nu, \kappa > 0,$ (ii) $\mu = \nu = 0, \kappa > 0,$ (iii) $\mu, \nu > 0, \kappa = 0,$ (iv) $\mu = \nu = \kappa = 0.$

Theorem 1. Let us assume that $0 < \sigma < \infty$, $\overline{B}^1 \neq 0$ and one of the above cases (i)–(iv) for the system (1); in the cases (ii) and (iv) we also assume the additional conditions $|p_{\theta}(\bar{\rho}, \bar{\theta})| + |\bar{B}| \neq 0$ and $|\bar{B}| \neq 0$, respectively. Moreover assume that $(\rho_0 - \bar{\rho}, \mathbf{u}_0, \theta_0 - \bar{\theta}, B_0 - \bar{B}) \in H^2(\mathbf{R}^1)$ for the initial data (6). Then if $\|\rho_0 - \bar{\rho}, \mathbf{u}_0, \theta_0 - \bar{\theta}, B_0 - \bar{B}\|_2$ is sufficiently small, the initial value problem (1) (6) has a unique smooth solution $(\rho, \mathbf{u}, \theta, B)$ (t, x) global in time. Here $\|\cdot\|_l$ denotes the norm of the Sobolev space $H^1(\mathbf{R}^1)$.

Remarks. 1. In the cases (i) (ii) the solution $(\rho, \boldsymbol{u}, \theta, B)(t)$ converges to the constant state $(\bar{\rho}, 0, \bar{\theta}, \bar{B})$ as $t \to \infty$ in the maximum norm. While in the cases (iii) (iv) we only know; $(p(\rho, \theta), \boldsymbol{u}, B)(t)$ approaches to $(p(\bar{\rho}, \bar{\theta}), 0, \bar{B})$ as $t \to \infty$ in the maximum norm. 2. If $\bar{B}^1=0$ is assumed for (1), in every case of (i)-(iv) we also establish the same results as above ones except that the equation of v becomes trivial $(v(t, x) = v_0(x))$ for (ii) or (iv). 3. When all the coefficients μ, ν, κ and $1/\sigma$ are positive and independent of θ , we can show the existence of a classical global solution of (1) in the Hölder space ([4]).

Neglecting the magnetic field and the second and third components of the velocity (B=v=0) in (1), we have the usual system in fluid dynamics:

(7)
$$\begin{cases} (1/\rho)_t - u_x = 0, & u_t + p_x = (\nu \rho u_x)_x, \\ \theta_t + (\theta p_\theta/e_\theta) u_x = (1/e_\theta) \{ (\kappa \rho \theta_x)_x + \nu \rho u_x^2 \}. \end{cases}$$

For the system (7), statements in Theorem 1 are simplified as follows:

Corollary. For (7) we assume one of the cases (i)–(iii) (for case (ii) we assume $p_{\theta}(\bar{\rho}, \bar{\theta}) \neq 0$ in addition). Then if $\|\rho_0 - \bar{\rho}, u_0, \theta_0 - \bar{\theta}\|_2$ is appropreately small, a unique smooth solution $(\rho, u, \theta)(t, x)$ of (7) exists for all time. Remark. It is well known that in the case (iv) smooth solutions of (7) in general develop singularities in the first derivatives in finite time ([2]).

Theorem 2. Assume that $\sigma = \infty$, $\overline{B}^1 \neq 0$ and (i) or (iii) for (1). Then if the initial data are small as in Theorem 1, a unique smooth solution of (1) exists globally in time.

Remarks. 1. In spite of $\sigma = \infty$, we can show the same decay law as in Theorem 1. 2. When (iv) is satisfied then the first derivatives of solutions of (1) become infinite in finite time ([2]), while in the case of (ii) we have no results on the existence or non-existence of global solutions of (1). 3. If $\overline{B}^1=0$, the last equation of (1) implies $(B/\rho)(t, x)$ $=(B_0/\rho_0)(x)$. Therefore the system (1) is reduced to

$$\begin{cases} (1/\rho)_t - u_x = 0, & u_t + \{p + (1/2\mu_0) | B_0/\rho_0|^2 \rho^2\}_x = (\nu \rho u_x)_x, \\ \theta_t + (\theta p_\theta/e_\theta) u_x = (1/e_\theta) \{(\kappa \rho \theta_x)_x + \nu \rho u_x^2\}, \end{cases}$$

where we set v=0 for simplicity. In this system, it seems that additional considerations are necessary to the general case of $B_0/\rho_0 \approx \text{constant}$.

§ 3. Proof of theorems. Since local existence theorem is well known ([5]), to show the existence of a global solution, it suffices to obtain the a priori estimates for the solution. We prove the estimates only in the case that $0 < \sigma < \infty$, $\overline{B}^1 \neq 0$ and (iv). The method here is also applicable with slight modification to the other cases and gives the analogous estimates.

Lemma (a priori estimate). Let T be some positive constant. Assume that $(\rho, u, \theta, B)(t, x)$ satisfies $\inf \{\rho(t, x), \theta(t, x); (t, x) \in Q_T\} > 0$ and $E(T) < \infty$, and is a solution of (1) in the case that $0 < \sigma < \infty$, $\overline{B}^1 \neq 0$ and (iv) $(|\overline{B}| \neq 0)$. Then if E(T) is suitably small, we have the a priori estimate $E(T) \le CE(0)$ for some constant C > 1 independent of T.

Proof. Integrating (5) with $\mu = \nu = \kappa = 0$ over Q_t ($t \in [0, T]$), we have the following $L^2(\mathbf{R}^1)$ -estimate for the solution:

(8)
$$\|(\rho-\overline{\rho},\boldsymbol{u},\theta-\overline{\theta},B-\overline{B})(t)\|^2+\int_0^t\|D_xB(\tau)\|^2\,d\tau\leq CE(0)^2,$$

where $\|\cdot\|$ denotes the $L^2(\mathbb{R}^1)$ -norm. Next, in the same way as [3], we obtain the $L^2(\mathbb{R}^1)$ -estimates for the derivatives of the solution. Rewrite the system (1) with $\mu = \nu = \kappa = 0$ by the change of variables:

(9)
$$\begin{cases} p_t + qu_x = (\rho p_\theta / e_\theta \sigma \mu_0^2) |B_x|^2, & u_t + (p + |B|^2 / 2\mu_0)_x = 0, \\ v_t - (\bar{B}^1 B / \mu_0)_x = 0, & S_t = (\rho / \theta \sigma \mu_0^2) |B_x|^2, \\ B_t + \rho (Bu_x - \bar{B}^1 v_x) = \rho \{ (\rho / \sigma \mu_0) B_x \}_x, \end{cases}$$

where $q = \rho^2 p_{\rho} + \theta p_{\theta}^2 / e_{\theta} > 0$ by (2).

Operate $D_x^i = (\partial/\partial x)^i$, l=0, 1, 2, on each equation in (9) and we obtain the system of $D_x^i(p, \boldsymbol{u}, S, B)$. First, multiplying the equations of $D_x^i p$, $D_x^i(\boldsymbol{u}, S)$ and $D_x^i B$ by $(1/q)D_x^i p$, $D_x^i(\boldsymbol{u}, S)$ and $(1/\mu_0 \overline{\rho})D_x^i B$ respectively, summing them up, integrating over Q_i , and then adding the resulting equality for l=1, 2, we obtain after integration by parts

(10)
$$||D_x(\rho, \boldsymbol{u}, \theta, B)(t)||_1^2 + \int_0^t ||D_x^2 B(\tau)||_1^2 d\tau \leq C(E(0)^2 + E(T)^3).$$

Secondly, multiply the equations of $D_x^l p$, $D_x^l u$ and $D_x^l B$ by $2(\overline{B}^l \overline{B}/q) \cdot D_x^l v_x$, $\beta D_x^l p_x$ (β : positive constant) and $(\overline{B} D_x^l u_x - \overline{B}^l D_x^l v_x)/\overline{\rho}$ respectively, sum up the equalities obtained and integrate it over Q_i . Estimating the resulting equality by use of the Schwarz inequality, taking β suitably small and adding for l=0, 1, we arrive at

(11)
$$\int_{0}^{t} \|D_{x}(p, \boldsymbol{u})(\tau)\|_{1}^{2} d\tau - C\{\|(\rho - \overline{\rho}, \boldsymbol{u}, \theta - \overline{\theta}, B - \overline{B})(t)\|_{2}^{2} + \int_{0}^{t} \|D_{x}B(\tau)\|_{2}^{2} d\tau\} \le C(E(0)^{2} + E(T)^{3}),$$

where $(\overline{B}^{1}, \overline{B}) \neq 0$ is used.

Joining (8), (10) and (11) together, we gain the inequality $E(T)^2 \leq C(E(0)^2 + E(T)^3)$ from which the assertion in Lemma follows directly. This completes the proof.

Finally we show the asymptotic behavior of the solution. Since $D_x(p, \mathbf{u}) \in L^2(0, \infty; H^1(\mathbf{R}^1))$ and $D_x B \in L^2(0, \infty; H^2(\mathbf{R}^1))$, we have $\partial_t(p, \mathbf{u}, B) \in L^2(0, \infty; H^1(\mathbf{R}^1))$ by use of (9). Therefore we conclude that $\|D_x(p, \mathbf{u}, B)(t)\| \rightarrow 0$ as $t \rightarrow \infty$. It follows from this that

 $\sup \{ |(p(\rho, \theta) - p(\overline{\rho}, \overline{\theta}), \boldsymbol{u}, \boldsymbol{B} - \overline{B})(t)|; x \in \boldsymbol{R}^{1} \}$

converges to zero as $t \rightarrow \infty$ with the aid of the Sobolev inequality in one space dimension.

This completes the proof of Theorems.

References

- L. D. Landau and E. M. Lifshitz: Electrodynamics of Continuous Media. Pergamon, New York (1960).
- [2] Tai-Ping Liu: J. Diff. Eq., 33, 92-111 (1979).
- [3] A. Matsumura: University of Wisconsin, MRC Technical Summary Report, no. 2194 (1981).
- [4] M. Okada and S. Kawashima: On the equations of one-dimensional motion of compressible viscous fluids (to appear in J. Math. Kyoto Univ.).
- [5] A. I. Vol'pert and S. I. Hudjaev: Math. USSR Sbornik, 16, 517-544 (1972).