106. Smooth Global Solutions for the One-Dimensional Equations in Magnetohydrodynamics

By Shuichi Kawashima*) and Mari OKada**)
(Communicated by Kôsaku Yosida, m. J. A., Nov. 12, 1982)

§ 1. Introduction. The motion of electrically conducting fluids on one space coordinate is described by the equations in Lagrangian representation ([1]):

$$
\left\{\begin{array}{l}
(1 / \rho)_{t}-u_{x}=0, \tag{1}\\
u_{t}+\left(p+|B|^{2} / 2 \mu_{0}\right)_{x}=\left(\nu \rho u_{x}\right)_{x}, \quad v_{t}-\left(\bar{B}^{1} B / \mu_{0}\right)_{x}=\left(\mu \rho v_{x}\right)_{x}, \\
\theta_{t}+\left(\theta p_{\theta} / e_{\theta}\right) u_{x}=\left(1 / e_{\theta}\right)\left\{\left(\kappa \rho \theta_{x}\right)_{x}+\nu \rho u_{x}^{2}+\mu \rho\left|v_{x}\right|^{2}+\left(\rho / \sigma \mu_{0}^{2}\right)\left|B_{x}\right|^{2}\right\} \\
(B / \rho)_{t}-\left(\bar{B}^{1} v\right)_{x}=\left\{\left(\rho / \sigma \mu_{0}\right) B_{x}\right\}_{x} .
\end{array}\right.
$$

Here $\rho>0, \boldsymbol{u}=\left(u^{1}, u^{2}, u^{3}\right) \in \boldsymbol{R}^{3}, \theta>0$ and $\boldsymbol{B}=\left(\bar{B}^{1}, B^{2}, B^{3}\right) \in \boldsymbol{R}^{3}$ represent the mass density, the velocity, the absolute temperature and the magnetic induction, where we write $u=u^{1}, v=\left(u^{2}, u^{3}\right), B=\left(B^{2}, B^{3}\right)$, and \bar{B}^{1} is a constant.

We assume that the pressure p and the internal energy e are smoothly related to ρ and θ by the equations of state

$$
\begin{equation*}
p_{\rho}>0, \quad e_{\theta}>0, \quad d e=\theta d S-p d(1 / \rho) \tag{2}
\end{equation*}
$$

where $S=S(\rho, \theta)$ is the entropy ; the coefficients of viscosity μ, ν, the coefficient of heat conductivity κ and the coefficient of electrical resistivity $1 / \sigma$ (σ : the coefficient of electrical conductivity) are all smooth functions of ρ and θ, and are positive or identically zero; μ_{0} is the magnetic permeability, now a positive constant.

In this paper, we seek smooth solutions of (1) in a small neighborhood of a constant state $(\rho, \boldsymbol{u}, \theta, B)=(\bar{\rho}, 0, \bar{\theta}, \bar{B})$ where $\bar{\rho}>0, \bar{\theta}>0$ and $\bar{B} \in \boldsymbol{R}^{2}$ are arbitrary fixed constants. To obtain the a priori estimates for the solutions, we use the following energy form ([4]):

$$
\mathcal{E}=e-\bar{e}+\bar{p}(1 / \rho-1 / \bar{\rho})-\bar{\theta}(S-\bar{S})+|u|^{2} / 2+|B-\bar{B}|^{2} / 2 \mu_{0} \rho,
$$

where $\bar{e}=e(\bar{\rho}, \bar{\theta})$ and so on. Note that if $|\rho-\bar{\rho}, \theta-\bar{\theta}|$ is small, \mathcal{E} is equivalent to the quadratic form $|\rho-\bar{\rho}, u, \theta-\bar{\theta}, B-\bar{B}|^{2}$. This is based on the strict convexity of the internal energy e as a function of $1 / \rho$ and S.

From (1) and (2), we have the energy conservation law:

$$
\begin{gather*}
\left(e+|\boldsymbol{u}|^{2} / 2+|B|^{2} / 2 \mu_{0} \rho\right)_{t}+\left\{\left(p+|B|^{2} / 2 \mu_{0}\right) u-\left(\bar{B}^{1} B / \mu_{0}\right) \cdot v\right\}_{x} \tag{3}\\
\quad=\left\{\nu \rho u u_{x}+\mu \rho v \cdot v_{x}+\kappa \rho \theta_{x}+\left(\rho / \sigma \mu_{0}^{2}\right) B \cdot B_{x}\right\}_{x},
\end{gather*}
$$

and the equation of entropy:

[^0](4) $S_{t}=\left\{(\kappa \rho / \theta) \theta_{x}\right\}_{x}+(1 / \theta)\left\{\nu \rho u_{x}^{2}+\mu \rho\left|v_{x}\right|^{2}+(\kappa \rho / \theta) \theta_{x}^{2}+\left(\rho / \sigma \mu_{0}^{2}\right) \mid B_{x}{ }^{2}\right\}$.

Using (1), (3) and (4), we have the identity for \mathcal{E} which plays an important role in the present paper :
(5)

$$
\begin{aligned}
\mathcal{E}_{t}+\{ & \left\{\left(p+|B|^{2} / 2 \mu_{0}-\bar{p}-|\overline{\bar{B}}|^{2} / 2 \mu_{0}\right) u-\left(\bar{B}^{1}(B-\bar{B}) / \mu_{0}\right) \cdot v\right\}_{x} \\
& +(\bar{\theta} / \theta)\left\{\nu \rho u_{x}^{2}+\mu \rho\left|v_{x}\right|^{2}+(\kappa \rho / \theta) \theta_{x}^{2}+\left(\rho / \sigma \mu_{0}^{2}\right) \mid B_{x}{ }^{2}\right\} \\
= & \left\{\nu \rho u u_{x}+\mu \rho v \cdot v_{x}+(1-\bar{\theta} / \theta) \kappa \rho \theta_{x}+\left(\rho / \sigma \mu_{0}^{2}\right)(B-\bar{B}) \cdot B_{x}\right\}_{x} .
\end{aligned}
$$

§2. Results and remarks. We consider the system (1) with the initial data:

$$
\left\{\begin{array}{l}
(\rho, \boldsymbol{u}, \theta, B)(0, x)=\left(\rho_{0}, \boldsymbol{u}_{0}, \theta_{0}, B_{0}\right)(x), \quad x \in \boldsymbol{R}^{1}, \tag{6}\\
\inf \left\{\rho_{0}(x), \theta_{0}(x) ; x \in \boldsymbol{R}^{1}\right\}>0,
\end{array}\right.
$$

where $\boldsymbol{u}_{0}=\left(u_{0}, v_{0}\right)$. We set up two cases: $0<\sigma<\infty$ (finitely conducting) and $\sigma=\infty$ (perfectly conducting). In each case there are the following four cases:
(i) $\mu, \nu, \kappa>0$,
(ii) $\mu=\nu=0, \kappa>0$,
(iii) $\mu, \nu>0, \kappa=0$,
(iv) $\mu=\nu=\kappa=0$.

Theorem 1. Let us assume that $0<\sigma<\infty, \bar{B}^{1} \neq 0$ and one of the above cases (i)-(iv) for the system (1); in the cases (ii) and (iv) we also assume the additional conditions $\left|p_{\theta}(\bar{\rho}, \bar{\theta})\right|+|\bar{B}| \neq 0$ and $|\bar{B}| \neq 0$, respectively. Moreover assume that $\left(\rho_{0}-\bar{\rho}, \boldsymbol{u}_{0}, \theta_{0}-\bar{\theta}, B_{0}-\bar{B}\right) \in H^{2}\left(\boldsymbol{R}^{1}\right)$ for the initial data (6). Then if $\left\|\rho_{0}-\bar{\rho}, \boldsymbol{u}_{0}, \theta_{0}-\bar{\theta}, B_{0}-\bar{B}\right\|_{2}$ is sufficiently small, the initial value problem (1) (6) has a unique smooth solution ($\rho, \boldsymbol{u}, \theta, B$) (t, x) global in time. Here $\|\cdot\|_{l}$ denotes the norm of the Sobolev space $H^{l}\left(\boldsymbol{R}^{1}\right)$.

Remarks. 1. In the cases (i) (ii) the solution $(\rho, \boldsymbol{u}, \theta, B)(t)$ converges to the constant state ($\bar{\rho}, 0, \bar{\theta}, \bar{B}$) as $t \rightarrow \infty$ in the maximum norm. While in the cases (iii) (iv) we only know; $(p(\rho, \theta), \boldsymbol{u}, B)(t)$ approaches to ($p(\bar{\rho}, \bar{\theta}), 0, \bar{B}$) as $t \rightarrow \infty$ in the maximum norm. 2. If $\bar{B}^{1}=0$ is assumed for (1), in every case of (i)-(iv) we also establish the same results as above ones except that the equation of v becomes trivial $(v(t, x)$ $=v_{0}(x)$) for (ii) or (iv). 3. When all the coefficients μ, ν, κ and $1 / \sigma$ are positive and independent of θ, we can show the existence of a classical global solution of (1) in the Hölder space ([4]).

Neglecting the magnetic field and the second and third components of the velocity ($B=v=0$) in (1), we have the usual system in fluid dynamics:

$$
\left\{\begin{array}{l}
(1 / \rho)_{t}-u_{x}=0, \quad u_{t}+p_{x}=\left(\nu \rho u_{x}\right)_{x}, \tag{7}\\
\theta_{t}+\left(\theta p_{\theta} / e_{\theta}\right) u_{x}=\left(1 / e_{\theta}\right)\left\{\left(\kappa \rho \theta_{x}\right)_{x}+\nu \rho u_{x}^{2}\right\} .
\end{array}\right.
$$

For the system (7), statements in Theorem 1 are simplified as follows:
Corollary. For (7) we assume one of the cases (i)-(iii) (for case (ii) we assume $p_{\theta}(\bar{\rho}, \bar{\theta}) \neq 0$ in addition). Then if $\left\|\rho_{0}-\bar{\rho}, u_{0}, \theta_{0}-\bar{\theta}\right\|_{2}$ is appropreately small, a unique smooth solution $(\rho, u, \theta)(t, x)$ of (7) exists for all time.

Remark. It is well known that in the case (iv) smooth solutions of (7) in general develop singularities in the first derivatives in finite time ([2]).

Theorem 2. Assume that $\sigma=\infty, \bar{B}^{1} \neq 0$ and (i) or (iii) for (1). Then if the initial data are small as in Theorem 1, a unique smooth solution of (1) exists globally in time.

Remarks. 1. In spite of $\sigma=\infty$, we can show the same decay law as in Theorem 1. 2. When (iv) is satisfied then the first derivatives of solutions of (1) become infinite in finite time ([2]), while in the case of (ii) we have no results on the existence or non-existence of global solutions of (1). 3. If $\bar{B}^{1}=0$, the last equation of (1) implies $(B / \rho)(t, x)$ $=\left(B_{0} / \rho_{0}\right)(x)$. Therefore the system (1) is reduced to

$$
\left\{\begin{array}{l}
(1 / \rho)_{t}-u_{x}=0, \quad u_{t}+\left\{p+\left(1 / 2 \mu_{0}\right)\left|B_{0} / \rho_{0}\right|^{2} \rho^{2}\right\}_{x}=\left(\nu \rho u_{x}\right)_{x}, \\
\theta_{t}+\left(\theta p_{\theta} / e_{\theta}\right) u_{x}=\left(1 / e_{\theta}\right)\left\{\left(\kappa \rho \theta_{x}\right)_{x}+\nu \rho u_{x}^{2}\right\},
\end{array}\right.
$$

where we set $v=0$ for simplicity. In this system, it seems that additional considerations are necessary to the general case of B_{0} / ρ_{0} \neq constant.
§3. Proof of theorems. Since local existence theorem is well known ([5]), to show the existence of a global solution, it suffices to obtain the a priori estimates for the solution. We prove the estimates only in the case that $0<\sigma<\infty, \bar{B}^{1} \neq 0$ and (iv). The method here is also applicable with slight modification to the other cases and gives the analogous estimates.

Set $Q_{T}=[0, T] \times R^{1}($ for $T>0)$ and

$$
E(T)^{2}=\sup \left\{\|(\rho-\bar{\rho}, u, \theta-\bar{\theta}, B-\bar{B})(t)\|_{2}^{2} ; t \in[0, T]\right\}
$$

$$
+\int_{0}^{T}\left\|D_{x}(p(\rho, \theta), u)(\tau)\right\|_{1}^{2}+\left\|D_{x} B(\tau)\right\|_{2}^{2} d \tau
$$

Lemma (a priori estimate). Let T be some positive constant. Assume that $(\rho, \boldsymbol{u}, \theta, B)(t, x)$ satisfies $\inf \left\{\rho(t, x), \theta(t, x) ;(t, x) \in Q_{T}\right\}>0$ and $E(T)<\infty$, and is a solution of (1) in the case that $0<\sigma<\infty, \bar{B}^{1} \neq 0$ and (iv) $(|\bar{B}| \neq 0)$. Then if $E(T)$ is suitably small, we have the a priori estimate $E(T) \leq C E(0)$ for some constant $C>1$ independent of T.

Proof. Integrating (5) with $\mu=\nu=\kappa=0$ over $Q_{t}(t \in[0, T])$, we have the following $L^{2}\left(\boldsymbol{R}^{1}\right)$-estimate for the solution :

$$
\begin{equation*}
\|(\rho-\bar{\rho}, u, \theta-\bar{\theta}, B-\bar{B})(t)\|^{2}+\int_{0}^{t}\left\|D_{x} B(\tau)\right\|^{2} d \tau \leq C E(0)^{2} \tag{8}
\end{equation*}
$$

where $\|\cdot\|$ denotes the $L^{2}\left(\boldsymbol{R}^{1}\right)$-norm. Next, in the same way as [3], we obtain the $L^{2}\left(\boldsymbol{R}^{1}\right)$-estimates for the derivatives of the solution. Rewrite the system (1) with $\mu=\nu=\kappa=0$ by the change of variables:

$$
\left\{\begin{array}{l}
p_{t}+q u_{x}=\left(\rho p_{\theta} / e_{\theta} \sigma \mu_{0}^{2}\right)\left|B_{x}\right|^{2}, \quad u_{t}+\left(p+|B|^{2} / 2 \mu_{0}\right)_{x}=0, \tag{9}\\
v_{t}-\left(\bar{B}^{1} B / \mu_{0}\right)_{x}=0, \quad S_{t}=\left(\rho / \theta \sigma \mu_{0}^{2}\right)\left|B_{x}\right|^{2}, \\
B_{t}+\rho\left(B u_{x}-\bar{B}^{1} v_{x}\right)=\rho\left\{\left(\rho / \sigma \mu_{0}\right) B_{x}\right\}_{x},
\end{array}\right.
$$

where $q=\rho^{2} p_{\rho}+\theta p_{\theta}^{2} / e_{\theta}>0$ by (2).

Operate $D_{x}^{l}=(\partial / \partial x)^{l}, l=0,1,2$, on each equation in (9) and we obtain the system of $D_{x}^{l}(p, \boldsymbol{u}, S, B)$. First, multiplying the equations of $D_{x}^{l} p, D_{x}^{l}(u, S)$ and $D_{x}^{l} B$ by $(1 / q) D_{x}^{l} p, D_{x}^{l}(u, S)$ and $\left(1 / \mu_{0} \bar{\rho}\right) D_{x}^{l} B$ respectively, summing them up, integrating over Q_{t}, and then adding the resulting equality for $l=1,2$, we obtain after integration by parts

$$
\begin{equation*}
\left\|D_{x}(\rho, \boldsymbol{u}, \theta, B)(t)\right\|_{1}^{2}+\int_{0}^{t}\left\|D_{x}^{2} B(\tau)\right\|_{1}^{2} d \tau \leq C\left(E(0)^{2}+E(T)^{3}\right) \tag{10}
\end{equation*}
$$

Secondly, multiply the equations of $D_{x}^{l} p, D_{x}^{l} u$ and $D_{x}^{l} B$ by $2\left(\bar{B}^{1} \bar{B} / q\right) \cdot D_{x}^{l} v_{x}, \beta D_{x}^{l} p_{x}$ (β : positive constant) and ($\left.\bar{B} D_{x}^{l} u_{x}-\bar{B}^{1} D_{x}^{l} v_{x}\right) / \bar{\rho}$ respectively, sum up the equalities obtained and integrate it over Q_{t}. Estimating the resulting equality by use of the Schwarz inequality, taking β suitably small and adding for $l=0,1$, we arrive at

$$
\begin{align*}
& \int_{0}^{t}\left\|D_{x}(p, u)(\tau)\right\|_{1}^{2} d \tau-C\left\{\|(\rho-\bar{\rho}, \boldsymbol{u}, \theta-\bar{\theta}, B-\bar{B})(t)\|_{2}^{2}\right. \tag{11}\\
& \left.\quad+\int_{0}^{t}\left\|D_{x} B(\tau)\right\|_{2}^{2} d \tau\right\} \leq C\left(E(0)^{2}+E(T)^{3}\right)
\end{align*}
$$

where $\left(\bar{B}^{1}, \bar{B}\right) \neq 0$ is used.
Joining (8), (10) and (11) together, we gain the inequality $E(T)^{2}$ $\leq C\left(E(0)^{2}+E(T)^{3}\right)$ from which the assertion in Lemma follows directly. This completes the proof.

Finally we show the asymptotic behavior of the solution. Since $D_{x}(p, \boldsymbol{u}) \in L^{2}\left(0, \infty ; H^{1}\left(\boldsymbol{R}^{1}\right)\right)$ and $D_{x} B \in L^{2}\left(0, \infty ; H^{2}\left(\boldsymbol{R}^{1}\right)\right)$, we have $\partial_{t}(p, \boldsymbol{u}, B)$ $\in L^{2}\left(0, \infty ; H^{1}\left(R^{1}\right)\right)$ by use of (9). Therefore we conclude that $\left\|D_{x}(p, u, B)(t)\right\| \rightarrow 0$ as $t \rightarrow \infty$. It follows from this that
$\sup \left\{|(p(\rho, \theta)-p(\bar{\rho}, \bar{\theta}), \boldsymbol{u}, B-\bar{B})(t)| ; x \in \boldsymbol{R}^{1}\right\}$
converges to zero as $t \rightarrow \infty$ with the aid of the Sobolev inequality in one space dimension.

This completes the proof of Theorems.

References

[1] L. D. Landau and E. M. Lifshitz: Electrodynamics of Continuous Media. Pergamon, New York (1960).
[2] Tai-Ping Liu: J. Diff. Eq., 33, 92-111 (1979).
[3] A. Matsumura: University of Wisconsin, MRC Technical Summary Report, no. 2194 (1981).
[4] M. Okada and S. Kawashima: On the equations of one-dimensional motion of compressible viscous fluids (to appear in J. Math. Kyoto Univ.).
[5] A. I. Vol'pert and S. I. Hudjaev: Math. USSR Sbornik, 16, 517-544 (1972).

[^0]: *) Department of Mathematics, Nara Women's University.
 **) Department of Mathematics, Kyoto University.

