5. Singular Support of the Scattering Kernel for the Wave Equation Perturbed in a Bounded Domain

By Hideo Soga
Faculty of Education, Ibaraki University
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1983)

Introduction. Majda [4] obtained a representation of the scattering kernel $S(s, \theta, \omega)$ for the scattering by an obstacle \mathcal{O} (in R^{3}), and showed
(i) $\operatorname{supp} S(\cdot,-\omega, \omega) \subset(-\infty,-2 r(\omega)]$,
(ii) $S(s,-\omega, \omega)$ is singular (not C^{∞}) at $s=-2 r(\omega)$,
where $r(\omega)=\inf _{x \in \circ} x \omega$. In the present note we shall consider the corresponding problems for the acoustic scattering by an inhomogeneous fluid.

Let $a_{i j}(x)=a_{j i}(x) \in C^{\infty}\left(\boldsymbol{R}^{n}\right)(i, j=1, \cdots, n(n \geqq 2))$ satisfy

$$
\begin{aligned}
\sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \geqq \delta|\xi|^{2}, & \xi \in \boldsymbol{R}^{n}, \\
a_{i i}(x)=1, a_{i j}(x)=0(i \neq j) & \text { for }|x| \geqq r_{0}
\end{aligned}
$$

and set

$$
A u=\sum_{i, j=1}^{n} \partial_{x_{i}}\left(a_{i j}(x) \partial_{x_{j}} u\right)
$$

We consider the Cauchy problem

$$
\left\{\begin{array}{l}
\left(\partial_{t}^{2}-A\right) u(t, x)=0 \quad \text { in } \boldsymbol{R}^{1} \times \boldsymbol{R}^{n}, \\
u(0, x)=f_{1}(x), \partial_{t} u(0, x)=f_{2}(x)
\end{array} \text { on } \boldsymbol{R}^{n} .\right.
$$

In the same way as Lax and Phillips [1], [2], we define the scattering operator $S: L^{2}\left(\boldsymbol{R}^{1} \times S^{n-1}\right) \rightarrow L^{2}\left(\boldsymbol{R}^{1} \times S^{n-1}\right)$ by $S=T_{0}^{+}\left(W^{+}\right)^{-1} W^{-}\left(T_{0}^{-}\right)^{-1}$, where $T_{0}^{+}\left(T_{0}^{-}\right)$is the outgoing (incoming) translation representation associated with the unperturbed equation and $W^{ \pm}$are the wave operators (cf. Lax and Phillips [1], [2], the author [6]). S is represented with the distribution kernel $S(s, \theta, \omega)$ (called the scattering kernel) (cf. Majda [4], Lax and Phillips [3], the author [6]) :

$$
S k(s, \theta)=\iint S(s-t, \theta, \omega) k(t, \omega) d t d \omega
$$

Let $v(t, x ; \omega)\left(\omega \in S^{n-1}\right)$ be the solution of the equation

$$
\left\{\begin{array}{l}
\left(\partial_{t}^{2}-A\right) v=-2^{-1}(2 \pi i)^{1-n}\left(\partial_{t}^{2}-A\right) \delta(t-x \omega) \quad \text { in } \boldsymbol{R}^{1} \times \boldsymbol{R}^{n}, \\
v=0 \quad \text { for } t<-r_{0}
\end{array}\right.
$$

$v(t, x ; \omega)$ is a C^{∞} function of x and ω with the value $\mathcal{S}^{\prime}\left(\boldsymbol{R}_{t}^{1}\right)$.
Theorem 1. Set

$$
S_{0}(s, \theta, \omega)=\int_{R^{n}}\left(\partial_{t}^{n-2} \square v\right)(x \theta-s, x ; \omega) d x \quad\left(\square=\partial_{t}^{2}-\Delta\right),
$$

$$
K k=F^{-1}\left[(\operatorname{sgn} \sigma)^{n-1}(F k)(\sigma)\right],
$$

where F denotes the Fourier transformation in s. Then we have

$$
S k(s, \theta)=\iint S_{0}(s-t, \theta, \omega) k(t, \omega) d t d \omega+K k(s, \theta)
$$

Note that $S(s, \theta, \omega)=S_{0}(s, \theta, \omega)$ if $\theta \neq \omega$. In the scattering by an obstacle, the corresponding representation of the scattering kernel has been obtained (cf. Majda [4], the author [6]).

Using Theorem 1, we shall derive results corresponding to (0.1). Denote by $\left(q_{\omega}(t ; y), p_{\omega}(t ; y)\right.$) the solution of the equation

$$
\left\{\begin{array}{l}
\frac{d t}{d q}=-\partial_{\xi} \lambda_{0}^{-}(q, p), \quad \frac{d t}{d p}=\partial_{x} \lambda_{0}^{-}(q, p) \tag{0.2}\\
\left.q\right|_{t=-r_{0}}=y \quad\left(y \omega=-r_{0}\right),\left.\quad p\right|_{t=-r_{0}}=\omega\left(\omega \in S^{n-1}\right)
\end{array}\right.
$$

where $\lambda_{0}^{-}(x, \xi)=-\left\{\sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j}\right\}^{1 / 2}$.
Theorem 2. For $\omega, \theta \in S^{n-1}$ set

$$
\begin{aligned}
& M_{\omega}(\theta)=\left\{y: y \omega=-r_{0}, \lim _{t \rightarrow \infty} p_{\omega}(t ; y)=\theta\right\}, \\
& s_{\omega}(\theta)=\sup _{y \in M_{\omega}(\theta)} \lim _{t \rightarrow \infty}\left\{\left\langle q_{\omega}(t ; y), \theta>-t\right\} .\right.
\end{aligned}
$$

Then we have
sing supp $S_{0}(\cdot, \theta, \omega) \subset\left(-\infty, s_{\omega}(\theta)\right]$.
Theorem 3. Let $n=2$. Then $S_{0}(s, \theta, \omega)$ is singular at $s=s_{\omega}(\theta)$.
It is thought that $S_{0}(s, \theta, \omega)$ is singular at $s=s_{\omega}(\theta)$ also in the case of $n \geqq 3$. Our proof of Theorem 3, however, is not valid in this case. We note that in proof of Theorem 3 it does not suffice only to examine the wave front set of $v(t, x ; \omega)$. We can prove Theorem 1 by the same procedure as in the author [6], whose idea is due to Majda [4], and so we omit its proof. We only give outlines of the proofs of Theorems 2 and 3.
§ 1. Proof of Theorem 2. Set $w(t, x)=v(t, x ; \omega)+2^{-1}(2 \pi i)^{1-n}$ $\cdot \delta(t-x \omega)$. Then, by Theorem 1 we have

$$
\begin{equation*}
S_{0}(s, \theta, \omega)=\int_{R^{n}}\left(\partial_{t}^{n-2} \square w\right)(x \theta-s, x) d x . \tag{1.1}
\end{equation*}
$$

Noting that $w(t, x)$ satisfies the equation

$$
\left\{\begin{array}{l}
\left(\partial_{t}^{2}-A\right) w=0 \quad \text { in } \boldsymbol{R}^{1} \times \boldsymbol{R}^{n}, \tag{1.2}\\
w\left(-r_{0}, x\right)=2^{-1}(2 \pi i)^{1-n} \delta\left(-r_{0}-x \omega\right) \quad \text { on } \boldsymbol{R}^{n}, \\
\partial_{t} w\left(-r_{0}, x\right)=2^{-1}(2 \pi i)^{1-n} \delta^{\prime}\left(-r_{0}-x \omega\right) \quad \text { on } \boldsymbol{R}^{n},
\end{array}\right.
$$

by the well-known methods of the Fourier integral operators, we can know of the wave front set $\mathrm{WF}[w(t, x)]$:

Proposition 1.1.

$$
\mathrm{WF}[w(t, x)]=\left\{(t, x ; \tau, \xi): t \in \boldsymbol{R}^{1}, x=q_{\omega}(t ; y), \tau \in \boldsymbol{R}^{1}-\{0\},\right.
$$

$$
\left.\xi=-\tau p_{\omega}(t ; y)\right\} .
$$

Since $\partial_{t}^{2}-A=\square$ for $|x| \geqq r_{0}$, from this proposition we obtain
Lemma 1.2. For any $\varepsilon>0$ there is a conic neighborhood Γ in
$\boldsymbol{R}_{\tau}^{1} \times \boldsymbol{R}_{\xi}^{n}-\{0\}$ containing $(1,-\theta)$ and $(-1, \theta)$ such that if $(t, x ; \tau, \xi)$ $\in \mathrm{WF}[w(t, x)] \cap \boldsymbol{R}_{t}^{1} \times \boldsymbol{R}_{x}^{n} \times \Gamma,(t, x)$ satisfies

$$
|x| \leqq r_{1} \quad \text { or } \quad x \theta-t \leqq s_{\omega}(\theta)+\varepsilon,
$$

where r_{1} is some constant independent of ε.
To prove Theorem 2, we have only to show that for any $\rho(s)$ $\in C_{0}^{\infty}\left(\boldsymbol{R}^{1}\right)$ with $\operatorname{supp}[\rho] \subset\left(s_{\omega}(\theta),+\infty\right) \bar{F}\left[\rho(s) S_{0}(s, \theta, \omega)\right](\sigma)$ decreases rapidly as $|\sigma| \rightarrow \infty$ (where $\bar{F}[k](\sigma)=\int e^{i s \sigma} k(s) d s$).

Lemma 1.3. Let $\alpha(x)$ be a C^{∞} function on \boldsymbol{R}^{n} such that $\alpha(x)=1$ for $|x| \geqq \tilde{r}$ (\tilde{r} is any constant). Then, for any $\rho(s) \in C_{0}^{\infty}\left(\boldsymbol{R}^{1}\right)$ we have

$$
\bar{F}\left[\rho(s) S_{0}(s, \theta, \omega)\right](\sigma)=\mathscr{F}\left[\rho(x \theta-t) \partial_{t}^{n-2} \square(\alpha w)\right](\sigma,-\sigma \theta),
$$

where \mathcal{F} denotes the Fourier transformation in (t, x).
Take the function $\alpha(x)$ in Lemma 1.3 so that $\alpha(x)=0$ for $|x| \leqq r_{1}$ and $\alpha(x)=1$ for $|x| \geqq r_{1}+1$ (r_{1} is the constant in Lemma 1.2). It follows from Lemma 1.3 that
$\bar{F}\left[\rho(s) S_{0}(s, \theta, \omega)\right](\sigma)=\mathscr{F}\left[\rho(x \theta-t) \chi\left(D_{t}, D_{x}\right) \partial_{t}^{n-2} \square(\alpha w)\right](\sigma,-\sigma \theta)+0\left(|\sigma|^{-\infty}\right)$, where $\chi(\tau, \xi)$ is a C^{∞} function homogeneous of order 0 satisfying $\operatorname{supp}[\chi] \subset \Gamma$ (Γ is the set in Lemma 1.2) and $\chi(\tau, \xi)=1$ in a neighborhood of $(1,-\theta),(-1, \theta)$. Lemma 1.2 implies that

$$
\mathrm{WF}\left[\rho(x \theta-t) \chi\left(D_{t}, D_{x}\right) \partial_{t}^{n-2} \square(\alpha w)\right]=\phi .
$$

Therefore Theorem 2 is obtained.
§ 2. Proof of Theorem 3. It suffices to show that for any small $\varepsilon(>0)$ there exist some C^{∞} function $\rho(s)$ and a real number m such that $\operatorname{supp}[\rho] \subset\left[s_{\omega}(\theta)-\varepsilon, \quad s_{\omega}(\theta)+\varepsilon\right]$ and $(1+|\sigma|)^{m} \bar{F}\left[\rho(s) S_{0}(s, \theta, \omega)\right](\sigma) \notin L^{2}\left(\boldsymbol{R}^{1}\right)$. We cannot justify this assertion only by examining WF[w] (w is the solution of (1.2)).

Let us consider only the case that $M_{\omega}(\theta)$ is bounded. Denote by $\tilde{w}(t, x)$ the solution of (1.2) with the different initial data $\tilde{w}\left(-r_{0}, x\right)$ $=\gamma(x) w\left(-r_{0}, x\right), \partial_{t} \tilde{w}\left(-r_{0}, x\right)=\gamma(x) \partial_{t} w\left(-r_{0}, x\right)$ on \boldsymbol{R}^{n}, where $\gamma(x)$ is a C^{∞} function such that $\operatorname{supp}[\gamma]$ is contained in a sufficiently small neighborhood of $\mathrm{M}_{\omega}(\theta)$ and that $\gamma(x)=1$ on a neighborhood of $M_{\omega}(\theta)$. Let $\alpha(x)$ be the function in the proof of Theorem 2. Then, if supp $[\rho]$ is small enough, by Lemma 1.3 we have

$$
\bar{F}\left[\rho(s) S_{0}(s, \theta, \omega)\right](\sigma)=\mathscr{F}\left[\rho(x \theta-t) \partial_{t}^{n-2} \square(\alpha \tilde{w})\right](\sigma,-\sigma \theta)+0\left(|\sigma|^{-\infty}\right) .
$$

Furthermore it is seen that if \tilde{t} is large enough we obtain for any integer $N(\geqq 0)$

$$
\begin{aligned}
& \mathscr{F}\left[\rho(x \theta-t) \partial_{t}^{n-2} \square(\alpha \tilde{w})\right](\sigma,-\sigma \theta) \\
& \quad=\mathcal{F}^{\prime}\left[\sum_{j=0}^{N} \alpha_{j}(x) \sigma^{n-1-j} \tilde{w}(\tilde{t}, x)\right](-\sigma \theta)+0\left(|\sigma|^{-N+l}\right) .
\end{aligned}
$$

Here, \mathcal{F}^{\prime} denotes the Fourier transformation in x, l is an integer independent of N and $\operatorname{supp}\left[\alpha_{j}\right] \subset\left\{x: r_{1} \leqq|x| \leqq r_{1}+1\right\}$ (r_{1} is the constant in Lemma 1.2). Let ($q(t ; s, x, \xi), p(t ; s, x, \xi)$) be the solution of (0.2) with the different initial data $\left.q\right|_{t=s}=x,\left.p\right|_{t=s}=\xi$.

Lemma 2.1. Let s and t be arbitrary constants in $\left[-\gamma_{0}, \tilde{t}\right]$ satisfying $|s-t| \leqq \delta$. Assume that $\varphi(x)$ is any real-valued C^{∞} function with $\varphi(q(t ; s, y, \eta))=0, \partial_{x} \varphi(q(t ; s, y, \eta))=0$ and that $\beta(x)$ be any C^{∞} function with $\operatorname{supp}[\beta] \subset\{x:|x-q(t ; s, y, \eta)|<\varepsilon\}$. Then, if δ and ε are small enough, there is a real-valued C^{∞} function $\psi(x)$ such that $\psi(y)=0$, $\partial_{x} \psi(y)=0$ and that for any integer $N(\geqq 0)$

$$
\begin{aligned}
& \mathcal{F}^{\prime}\left[e^{i \sigma \varphi(x)} \beta(x) \tilde{w}(t, x)\right](\sigma p(t ; s, y, \eta)) \\
& \quad= \exp \{i \sigma y \eta-i \sigma p(t ; s, y, \eta) q(t ; s, y, \eta)\} \\
& \times \mathcal{F}^{\prime}\left[e^{i \sigma \psi(x)} \sum_{j=0}^{N} \chi_{i}(x) \sigma^{-j} \tilde{w}(s, x)\right](\sigma \eta)+0\left(|\sigma|^{-N+l}\right)
\end{aligned}
$$

where l is an integer independent of N and $\chi_{j}(x)$ is a C^{∞} function such that $\lim \operatorname{dis}\left(y, \operatorname{supp}\left[\chi_{j}\right]\right)=0$.

Take a sufficiently fine partition of unity $\left\{\beta_{k}(x)\right\}$ on \boldsymbol{R}^{n}, and apply Lemma 2.1 to each $\mathscr{F}^{\prime}\left[\alpha_{j}(x) \beta_{k}(x) \tilde{w}(\tilde{t}, x)\right](-\sigma \theta)$ repeatedly (divide $\left[-\gamma_{0}, \tilde{t}\right]$ into many fine intervals and use Lemma 2.1 on each interval). Then it is seen that there are C^{∞} functions $\left\{\psi_{k}(x)\right\}$ and $\left\{\chi_{k j}(x)\right\}$ such that

$$
\begin{aligned}
& \mathscr{F}\left[\rho(x \theta-t) \partial_{t}^{n-2} \square(\alpha \tilde{w})\right](\sigma,-\sigma \theta)=\exp \left\{-i \sigma\left(r_{0}+\tilde{t}+s_{\omega}(\theta)\right)\right\} \sigma^{n-1} \\
& \quad \times \sum_{k=1}^{N^{\prime}} \mathcal{F}^{\prime}\left[e^{i \sigma \psi_{k}(x)}\left(\sum_{j=0}^{N} \chi_{k j}(x) \sigma^{-j}\right) \tilde{w}\left(-r_{0}, x\right)\right](-\sigma \omega)+0\left(|\sigma|^{-N+l}\right)
\end{aligned}
$$

We see that if we choose α and ρ appropriately the above ψ_{k} and $\chi_{k j}$ satisfy all the assumptions of the following lemma, and therefore Theorem 3 is obtained.

Lemma 2.2. Assume that $\left\{\psi_{k}(x)\right\}_{k=1, \ldots, N^{\prime}}$ are real-valued C^{∞} functions on \boldsymbol{R}^{2} such that $\psi_{k}\left(y_{k}\right)=0, \partial_{x} \psi_{k}\left(y_{k}\right)=0\left(y_{k} \omega=-r_{0}\right)$. Let $\gamma(x)$ and $\left\{\chi_{k j}(x)\right\}_{\substack{k=1, \ldots, N^{\prime} \\ j=0, \ldots, N}}$ belong to $C_{0}^{\infty}\left(\boldsymbol{R}^{2}\right)$ and satisfy $\gamma(x) \geqq 0, \sum_{k=1}^{N^{\prime}} \chi_{k 0}(x) \geqq 0$ and $\sum_{k=1}^{N^{\prime}} \chi_{k 0}\left(y_{k}\right) \gamma\left(y_{k}\right)>0$. Then for some $m(<1 / 2)$ we have
$(1+|\sigma|)^{m} \sum_{k=1}^{N^{\prime}} \mathcal{F}^{\prime}\left[e^{i \sigma \psi_{k}(x)}\left(\sum_{j=0}^{N} \chi_{k j}(x) \sigma^{-j}\right) \gamma(x) \delta\left(-r_{0}-x \omega\right)\right](-\sigma \omega) \notin L^{2}\left(\boldsymbol{R}_{\sigma}^{1}\right)$.
This lemma is not correct in the case of $n \geqq 3$. Its proof is similar to that of Theorem 1 in the author [5].

References

[1] P. D. Lax and R. S. Phillips: Scattering Theory. Academic Press, New York (1967).
[2] -: Scattering theory for the acoustic equation in an even number of space dimensions. Indiana Univ. Math. J., 22, 101-134 (1972).
[3] -: The scattering of sound waves by an obstacle. Comm. Pure Appl. Math., 30, 195-233 (1977).
[4] A. Majda: A representation formula for the scattering operator and the inverse problem for arbitrary bodies. ibid., 30, 165-194 (1977).
[5] H. Soga: Oscillatory integrals with degenerate stationary points and their application to the scattering theory. Comm. in P. D. E., 6, 273-287 (1981).
[6] -: Singularities of the scattering kernel for convex obstacles (to appear in J. Math. Kyoto Univ.).

