5. Singular Support of the Scattering Kernel for the Wave Equation Perturbed in a Bounded Domain

By Hideo SOGA

Faculty of Education, Ibaraki University

(Communicated by Kôsaku YOSIDA, M. J. A., Jan. 12, 1983)

Introduction. Majda [4] obtained a representation of the scattering kernel $S(s, \theta, \omega)$ for the scattering by an obstacle \mathcal{O} (in \mathbb{R}^3), and showed

(0.1) (i) supp $S(\cdot, -\omega, \omega) \subset (-\infty, -2r(\omega)]$, (ii) $S(s, -\omega, \omega)$ is singular (not C^{∞}) at $s = -2r(\omega)$, where $r(\omega) = \inf_{x \in 0} x\omega$. In the present note we shall consider the corresponding problems for the acoustic scattering by an inhomogeneous fluid.

Let $a_{ij}(x) = a_{ji}(x) \in C^{\infty}(\mathbb{R}^n)$ $(i, j=1, \dots, n \ (n \ge 2))$ satisfy $\sum_{i,j=1}^n a_{ij}(x)\xi_i\xi_j \ge \delta |\xi|^2, \quad \xi \in \mathbb{R}^n,$ $a_{ii}(x)=1, \ a_{ij}(x)=0 \ (i \ne j) \quad \text{ for } |x| \ge r_0,$

and set

$$Au = \sum_{i,j=1}^n \partial_{x_i}(a_{ij}(x)\partial_{x_j}u).$$

We consider the Cauchy problem

$$\begin{cases} (\partial_t^2 - A)u(t, x) = 0 & \text{in } \mathbb{R}^1 \times \mathbb{R}^n, \\ u(0, x) = f_1(x), \ \partial_t u(0, x) = f_2(x) & \text{on } \mathbb{R}^n \end{cases}$$

In the same way as Lax and Phillips [1], [2], we define the scattering operator $S: L^2(\mathbb{R}^1 \times S^{n-1}) \to L^2(\mathbb{R}^1 \times S^{n-1})$ by $S = T_0^+(W^+)^{-1}W^-(T_0^-)^{-1}$, where $T_0^+(T_0^-)$ is the outgoing (incoming) translation representation associated with the unperturbed equation and W^{\pm} are the wave operators (cf. Lax and Phillips [1], [2], the author [6]). S is represented with the distribution kernel $S(s, \theta, \omega)$ (called the scattering kernel) (cf. Majda [4], Lax and Phillips [3], the author [6]):

$$Sk(s, \theta) = \iint S(s-t, \theta, \omega)k(t, \omega)dtd\omega.$$

Let $v(t, x; \omega)$ ($\omega \in S^{n-1}$) be the solution of the equation $\begin{cases} (\partial_t^2 - A)v = -2^{-1}(2\pi i)^{1-n}(\partial_t^2 - A)\delta(t - x\omega) & \text{in } \mathbf{R}^1 \times \mathbf{R}^n, \\ v = 0 & \text{for } t < -r_0. \end{cases}$

 $v(t, x; \omega)$ is a C^{∞} function of x and ω with the value $\mathcal{S}'(\mathbf{R}_{t}^{1})$.

Theorem 1. Set

$$S_0(s, \theta, \omega) = \int_{\mathbb{R}^n} (\partial_t^{n-2} \Box v) (x\theta - s, x; \omega) dx \quad (\Box = \partial_t^2 - \Delta),$$

H. SOGA

[Vol. 59(A),

 $Kk = F^{-1}[(\operatorname{sgn} \sigma)^{n-1}(Fk)(\sigma)],$

where F denotes the Fourier transformation in s. Then we have

 $Sk(s, \theta) = \iint S_0(s-t, \theta, \omega)k(t, \omega)dtd\omega + Kk(s, \theta).$

Note that $S(s, \theta, \omega) = S_0(s, \theta, \omega)$ if $\theta \neq \omega$. In the scattering by an obstacle, the corresponding representation of the scattering kernel has been obtained (cf. Majda [4], the author [6]).

Using Theorem 1, we shall derive results corresponding to (0.1). Denote by $(q_{\omega}(t; y), p_{\omega}(t; y))$ the solution of the equation

$$(0.2) \begin{cases} \frac{dt}{dq} = -\partial_{\xi}\lambda_{0}^{-}(q, p), & \frac{dt}{dp} = \partial_{x}\lambda_{0}^{-}(q, p), \\ q|_{t=-r_{0}} = y \quad (y\omega = -r_{0}), \qquad p|_{t=-r_{0}} = \omega \quad (\omega \in S^{n-1}), \end{cases}$$
where $\lambda_{0}^{-}(x, \xi) = -\left\{\sum_{i,j=1}^{n} a_{ij}(x)\xi_{i}\xi_{j}\right\}^{1/2}.$
Theorem 2. For $\omega, \theta \in S^{n-1}$ set
$$M_{\omega}(\theta) = \{y : y\omega = -r_{0}, \lim_{t \to \infty} p_{\omega}(t; y) = \theta\},$$

$$s_{\omega}(\theta) = \sup_{y \in M_{\omega}(\theta)} \lim_{t \to \infty} \{ < q_{\omega}(t; y), \theta > -t \}.$$

Then we have

sing supp $S_0(\cdot, \theta, \omega) \subset (-\infty, s_{\omega}(\theta)].$

Theorem 3. Let n=2. Then $S_0(s, \theta, \omega)$ is singular at $s=s_{\omega}(\theta)$.

It is thought that $S_0(s, \theta, \omega)$ is singular at $s = s_{\omega}(\theta)$ also in the case of $n \ge 3$. Our proof of Theorem 3, however, is not valid in this case. We note that in proof of Theorem 3 it does not suffice only to examine the wave front set of $v(t, x; \omega)$. We can prove Theorem 1 by the same procedure as in the author [6], whose idea is due to Majda [4], and so we omit its proof. We only give outlines of the proofs of Theorems 2 and 3.

§ 1. Proof of Theorem 2. Set $w(t, x) = v(t, x; \omega) + 2^{-1}(2\pi i)^{1-n} \cdot \delta(t-x\omega)$. Then, by Theorem 1 we have

(1.1)
$$S_0(s,\,\theta,\,\omega) = \int_{\mathbb{R}^n} (\partial_t^{n-2} \Box w) (x\theta - s,\,x) dx.$$

Noting that w(t, x) satisfies the equation

(1.2)
$$\begin{cases} (\partial_t^2 - A)w = 0 & \text{in } \mathbf{R}^1 \times \mathbf{R}^n, \\ w(-r_0, x) = 2^{-1}(2\pi i)^{1-n}\delta(-r_0 - x\omega) & \text{on } \mathbf{R}^n, \\ \partial_t w(-r_0, x) = 2^{-1}(2\pi i)^{1-n}\delta'(-r_0 - x\omega) & \text{on } \mathbf{R}^n, \end{cases}$$

by the well-known methods of the Fourier integral operators, we can know of the wave front set WF[w(t, x)]:

Proposition 1.1.

$$WF[w(t, x)] = \{(t, x; \tau, \xi) : t \in \mathbf{R}^{1}, x = q_{\omega}(t; y), \tau \in \mathbf{R}^{1} - \{0\}, \\ \xi = -\tau p_{\omega}(t; y)\}.$$

Since $\partial_t^2 - A = \Box$ for $|x| \ge r_0$, from this proposition we obtain Lemma 1.2. For any $\varepsilon > 0$ there is a conic neighborhood Γ in $\mathbf{R}_{\tau}^{1} \times \mathbf{R}_{\xi}^{n} - \{0\}$ containing $(1, -\theta)$ and $(-1, \theta)$ such that if $(t, x; \tau, \xi)$ $\in WF[w(t, x)] \cap \mathbf{R}_{t}^{1} \times \mathbf{R}_{x}^{n} \times \Gamma$, (t, x) satisfies

 $|x| \leq r_1$ or $x\theta - t \leq s_{\omega}(\theta) + \varepsilon$,

where r_1 is some constant independent of ε .

To prove Theorem 2, we have only to show that for any $\rho(s) \in C_0^{\infty}(\mathbf{R}^1)$ with $\operatorname{supp}[\rho] \subset (s_{\omega}(\theta), +\infty) \overline{F}[\rho(s)S_0(s, \theta, \omega)](\sigma)$ decreases rapidly as $|\sigma| \to \infty$ (where $\overline{F}[k](\sigma) = \int e^{is\sigma} k(s) ds$).

Lemma 1.3. Let $\alpha(x)$ be a C^{∞} function on \mathbb{R}^n such that $\alpha(x)=1$ for $|x| \geq \tilde{r}$ (\tilde{r} is any constant). Then, for any $\rho(s) \in C_0^{\infty}(\mathbb{R}^1)$ we have

 $\overline{F}[\rho(s)S_0(s,\,\theta,\,\omega)](\sigma) = \mathcal{F}[\rho(x\theta-t)\partial_t^{n-2}\Box(\alpha w)](\sigma,\,-\sigma\theta),$ where \mathcal{F} denotes the Fourier transformation in $(t,\,x)$.

Take the function $\alpha(x)$ in Lemma 1.3 so that $\alpha(x)=0$ for $|x| \leq r_1$ and $\alpha(x)=1$ for $|x| \geq r_1+1$ (r_1 is the constant in Lemma 1.2). It follows from Lemma 1.3 that

 $\overline{F}[\rho(s)S_0(s, \theta, \omega)](\sigma) = \mathcal{F}[\rho(x\theta - t)\chi(D_t, D_x)\partial_t^{n-2} \Box(\alpha w)](\sigma, -\sigma\theta) + 0(|\sigma|^{-\infty}),$ where $\chi(\tau, \xi)$ is a C^{∞} function homogeneous of order 0 satisfying supp $[\chi] \subset \Gamma$ (Γ is the set in Lemma 1.2) and $\chi(\tau, \xi) = 1$ in a neighborhood of $(1, -\theta), (-1, \theta)$. Lemma 1.2 implies that

WF[$\rho(x\theta-t)\chi(D_t, D_x)\partial_t^{n-2}\Box(\alpha w)$]= ϕ .

Therefore Theorem 2 is obtained.

§ 2. Proof of Theorem 3. It suffices to show that for any small $\varepsilon(>0)$ there exist some C^{∞} function $\rho(s)$ and a real number *m* such that $\sup [\rho] \subset [s_{\omega}(\theta) - \varepsilon, s_{\omega}(\theta) + \varepsilon]$ and $(1+|\sigma|)^m \overline{F}[\rho(s)S_0(s, \theta, \omega)](\sigma) \notin L^2(\mathbb{R}^1)$. We cannot justify this assertion only by examining WF[*w*] (*w* is the solution of (1.2)).

Let us consider only the case that $M_{\omega}(\theta)$ is bounded. Denote by $\tilde{w}(t, x)$ the solution of (1.2) with the different initial data $\tilde{w}(-r_0, x)$ $= \gamma(x)w(-r_0, x), \partial_t \tilde{w}(-r_0, x) = \gamma(x)\partial_t w(-r_0, x)$ on \mathbb{R}^n , where $\gamma(x)$ is a C^{∞} function such that $\sup[\gamma]$ is contained in a sufficiently small neighborhood of $M_{\omega}(\theta)$ and that $\gamma(x)=1$ on a neighborhood of $M_{\omega}(\theta)$. Let $\alpha(x)$ be the function in the proof of Theorem 2. Then, if $\operatorname{supp}[\rho]$ is small enough, by Lemma 1.3 we have

 $\overline{F}[\rho(s)S_0(s, \theta, \omega)](\sigma) = \mathcal{F}[\rho(x\theta - t)\partial_t^{n-2} \Box(\alpha \tilde{w})](\sigma, -\sigma\theta) + 0(|\sigma|^{-\infty}).$ Furthermore it is seen that if \tilde{t} is large enough we obtain for any integer $N(\geq 0)$

$$\mathcal{F}[\rho(x\theta-t)\partial_t^{n-2}\Box(\alpha\tilde{w})](\sigma, -\sigma\theta) \\ = \mathcal{F}'\Big[\sum_{j=0}^N \alpha_j(x)\sigma^{n-1-j}\tilde{w}(\tilde{t}, x)\Big](-\sigma\theta) + 0(|\sigma|^{-N+l}).$$

Here, \mathcal{F}' denotes the Fourier transformation in x, l is an integer independent of N and $\operatorname{supp} [\alpha_j] \subset \{x: r_i \leq |x| \leq r_i+1\}$ (r_i is the constant in Lemma 1.2). Let $(q(t; s, x, \xi), p(t; s, x, \xi))$ be the solution of (0.2) with the different initial data $q|_{t=s} = x, p|_{t=s} = \xi$.

H. SOGA

Lemma 2.1. Let s and t be arbitrary constants in $[-\gamma_0, \bar{t}]$ satisfying $|s-t| \leq \delta$. Assume that $\varphi(x)$ is any real-valued C^{∞} function with $\varphi(q(t; s, y, \eta)) = 0$, $\partial_x \varphi(q(t; s, y, \eta)) = 0$ and that $\beta(x)$ be any C^{∞} function with $\operatorname{supp}[\beta] \subset \{x : |x-q(t; s, y, \eta)| < \varepsilon\}$. Then, if δ and ε are small enough, there is a real-valued C^{∞} function $\psi(x)$ such that $\psi(y) = 0$, $\partial_x \psi(y) = 0$ and that for any integer $N \geq 0$

$$\begin{aligned} \mathcal{F}'[e^{i\sigma\psi(x)}\beta(x)\tilde{w}(t,x)](\sigma p(t\,;\,s,\,y,\,\eta)) \\ = &\exp\{i\sigma y\eta - i\sigma p(t\,;\,s,\,y,\,\eta)q(t\,;\,s,\,y,\,\eta)\} \\ &\times \mathcal{F}'\Big[e^{i\sigma\psi(x)}\sum_{j=0}^{N}\chi_j(x)\sigma^{-j}\tilde{w}(s,\,x)\Big](\sigma\eta) + 0(|\sigma|^{-N+l}), \end{aligned}$$

where l is an integer independent of N and $\chi_j(x)$ is a C^{∞} function such that $\lim \operatorname{dis}(y, \operatorname{supp}[\chi_j]) = 0$.

Take a sufficiently fine partition of unity $\{\beta_k(x)\}$ on \mathbb{R}^n , and apply Lemma 2.1 to each $\mathcal{F}'[\alpha_j(x)\beta_k(x)\tilde{w}(\tilde{t}, x)](-\sigma\theta)$ repeatedly (divide $[-\gamma_0, \tilde{t}]$ into many fine intervals and use Lemma 2.1 on each interval). Then it is seen that there are C^{∞} functions $\{\psi_k(x)\}$ and $\{\chi_{kj}(x)\}$ such that

$$\mathcal{F}[\rho(x\theta-t)\partial_t^{n-2}\Box(\alpha\tilde{w})](\sigma, -\sigma\theta) = \exp\{-i\sigma(r_0+\tilde{t}+s_\omega(\theta))\}\sigma^{n-1}$$
$$\times \sum_{k=1}^{N'} \mathcal{F}'\Big[e^{i\sigma\psi_k(x)}\Big(\sum_{j=0}^N \chi_{kj}(x)\sigma^{-j}\Big)\tilde{w}(-r_0, x)\Big](-\sigma\omega) + 0(|\sigma|^{-N+1}).$$

We see that if we choose α and ρ appropriately the above ψ_k and χ_{kj} satisfy all the assumptions of the following lemma, and therefore Theorem 3 is obtained.

Lemma 2.2. Assume that $\{\psi_k(x)\}_{k=1,\ldots,N'}$ are real-valued C^{∞} functions on \mathbb{R}^2 such that $\psi_k(y_k)=0$, $\partial_x\psi_k(y_k)=0$ $(y_k\omega=-r_0)$. Let $\gamma(x)$ and $\{\chi_{k,j}(x)\}_{\substack{k=1,\ldots,N'\\ j=0,\ldots,N}}$ belong to $C_0^{\infty}(\mathbb{R}^2)$ and satisfy $\gamma(x)\geq 0$, $\sum_{k=1}^{N'}\chi_{k0}(x)\geq 0$ and $\sum_{k=1}^{N'}\chi_{k0}(y_k)\gamma(y_k)>0$. Then for some m (<1/2) we have $(1+|\sigma|)^m \sum_{k=1}^{N'} \mathcal{F}'\left[e^{i\sigma\psi_k(x)}\left(\sum_{j=0}^N\chi_{k,j}(x)\sigma^{-j}\right)\gamma(x)\delta(-r_0-x\omega)\right](-\sigma\omega)\notin L^2(\mathbb{R}^1)$.

This lemma is not correct in the case of $n \ge 3$. Its proof is similar to that of Theorem 1 in the author [5].

References

- P. D. Lax and R. S. Phillips: Scattering Theory. Academic Press, New York (1967).
- [2] —: Scattering theory for the acoustic equation in an even number of space dimensions. Indiana Univ. Math. J., 22, 101-134 (1972).
- [3] ——: The scattering of sound waves by an obstacle. Comm. Pure Appl. Math., 30, 195-233 (1977).
- [4] A. Majda: A representation formula for the scattering operator and the inverse problem for arbitrary bodies. ibid., 30, 165-194 (1977).
- [5] H. Soga: Oscillatory integrals with degenerate stationary points and their application to the scattering theory. Comm. in P. D. E., 6, 273-287 (1981).
- [6] —: Singularities of the scattering kernel for convex obstacles (to appear in J. Math. Kyoto Univ.).