10. On Surfaces of Class VII $_{0}$ with Global Spherical Shells

By Iku Nakamura
Department of Mathematics, Hokkaido University
(Communicated by Kunihiko Kodaira, m. J. A., Feb. 12, 1983)

Introduction. A minimal compact complex surface is called a surface of class VII_{0} or in short a VII_{0} surface if b_{1} (the first Betti number) is equal to 1 . Some VII_{0} surfaces, i.e., Hopf surfaces and Inoue surfaces with $b_{2}>0$ are smooth deformations of singular rational surfaces, each with a double curve, as was observed by [4], [7]. The purpose of this note is to report some results on smooth deformations of singular rational surfaces, each with a double curve [6]. As an application of them we study VII_{0} surfaces with global spherical shells in the sense of [3]. In § 4 we shall give a partial classification of surfaces with global spherical shells by using the results of [2], [5].

Notations. We denote by S a compact complex surface, by \mathcal{O}_{S} the structure sheaf of S, by b_{i} the i-th Betti number of S. For a singular complex surface Y we denote also by \mathcal{O}_{Y} the structure sheaf of Y. For two divisors C and C^{\prime} we denote by $C C^{\prime}$ the intersection number of C and C^{\prime}, by C^{2} the selfintersection number of C. We denote by \mathcal{S}_{t} a fiber $\pi^{-1}(t)(t \in D)$ of a morphism $\pi: \mathcal{S} \rightarrow D$, by \mathscr{D}_{t} the intersection of \mathscr{D} and \mathcal{S}_{t} for a π-flat Cartier divisor \mathscr{D} of \mathcal{S}. We denote by F_{m} a Hirzebruch surface $\operatorname{Proj}\left(\mathcal{O}_{P_{1} \oplus} \oplus \mathcal{O}_{P_{1}}(m)\right.$). We mean by a chain of rational curves a reduced divisor D with a decomposition $D=\sum_{\nu=1}^{r} D_{\nu}$ such that D_{ν} is a nonsingular rational curve, $D_{\nu} D_{\nu+1}=1, D_{\nu} D_{\mu}=0(\nu \neq \mu$, $\mu \pm 1)$. Then $Z y k e l(D)=\left(-D_{1}^{2}, \cdots,-D_{r}^{2}\right)$. For a cycle $C=\sum_{\nu=1}^{r} C_{\nu}$ of rational curves with $C_{\nu} C_{\nu+1}=1(\nu \in Z / r Z)$, we denote Zykel (C) $=\left(-C_{1}^{2}, \cdots,-C_{r}^{2}\right)(r \geqq 2) ;\left(-C_{1}^{2}+2\right)(r=1)$. See [5] for the definition of a cycle of rational curves.
§ 1. Global spherical shells.
(1.1) Definition [3]. A subset Σ of a compact complex surface S is called a global spherical shell (abbr. a GSS) if

1) $\quad \Sigma$ is a spherical shell $\left\{\left(z_{1}, z_{2}\right) \in C^{2} ; r<\left|z_{1}^{2}\right|+\left|z_{2}^{2}\right|<R\right\}$ for some positive numbers r and R, and
2) the complement $S-\Sigma$ of Σ in S is connected.
(1.2) Theorem [3]. Any surface with a GSS is a deformation of a blown-up primary Hopf surface with $b_{1}=1$. A minimal surface with a GSS is a primary Hopf surface if and only if $b_{2}=0$.
(1.3) Theorem [3], [6]. Any Inoue surface with $b_{2}>0$ contains a GSS.

See [5] for the definition of Inoue surfaces with $b_{2}>0$.
§2. Smooth deformations of singular rational surfaces.
(2.1) Definition. A triple $\left(X, C_{1}, C_{2}\right)$ or a quadruple (X, C_{1}, C_{2}, σ) is called admissible if

1) X is a nonsingular compact complex surface,
2) $C_{\nu}(\nu=1,2)$ is a nonsingular rational curve on X with $C_{1}^{2}>0$, $C_{1} C_{2}=0, C_{1}^{2}+C_{2}^{2} \geqq 0$,
3) σ is an isomorphism of C_{1} onto C_{2}.

Moreover we call the triple or the quadruple minimal if any exceptional curve of the first kind meets either C_{1} or C_{2}.

By identifying C_{1} and C_{2} by σ, we have a singular surface $Y=X / \sigma$ with a double curve \bar{C}, a nonsingular rational curve, along which Y is locally given by $x y=0$ with suitable local coordinates.
(2.2) Theorem [6]. Any minimal admissible triple (X, C_{1}, C_{2}) with $C_{1}^{2}=m, C_{2}^{2}=-n(m \geqq n>0)$ is one of the following;

1) $m=n=1, X$ is a finite succession of blowing-ups of \boldsymbol{P}^{2} with centers over the previous centers outside of a fixed line l, C_{1} and C_{2} are a proper transform of l and the exceptional curve of the last blowingup with $C_{2}^{2}=-1$.
2) $m \geqq 2, X$ is a finite succession of blowing-ups of a Hirzebruch surface F_{k} of degree $k(k \equiv m \bmod 2, k \leqq m)$ with centers over the previous centers outside of a fixed section τ of F_{k} over \boldsymbol{P}^{1} with $\tau^{2}=m, C_{1}$ and C_{2} are proper transforms of τ and an exceptional curve of the first kind by one of the blowing-ups.
3) $m=n \geqq 2, X=F_{m}, C_{1}$ and C_{2} are sections of F_{m} over P^{1}.
4) $m=4, X$ is a finite succession of blowing-ups of P^{2} with centers over the previous centers outside of a quadric q, C_{1} and C_{2} are proper transforms of q and an exceptional curve of the first kind by one of the blowing-ups.
5) $m=n=2, X$ is a three-times blowing-up $Q_{l_{n q}} Q_{p}\left(\boldsymbol{P}^{2}\right)$ of $\boldsymbol{P}^{2}, C_{1}$ and C_{2} are proper transforms of a quadric q and a linel where P is a point of $l-l \cap_{q}, l$ and q may have a contact.
(2.3) Theorem [6]. Let $\left(X, C_{1}, C_{2}, \sigma\right)$ be a minimal admissible quadruple. Then $Y=X / \sigma$ is smoothable by flat deformation. More precisely, Ext $_{\mathcal{O}_{Y}}^{2}\left(L_{Y}^{*}, \mathcal{O}_{Y}\right)=0$ where L_{Y}^{*} is the cotangent complex of Y. And there exists a proper flat family $\pi: \mathcal{S} \rightarrow D$ over the disc D such that $\mathcal{S}_{0}=Y, \mathcal{S}_{t}(t \neq 0)$ is a smooth surface with $b_{1}=1$. If moreover C_{1}^{2} $=1, C_{2}^{2}=-1$, then $\mathcal{S}_{t}(t \neq 0)$ is a VII_{0} surface with a GSS for $|t|$ small.
(2.4) Theorem [6]. Let S be a minimal surface with a GSS. Then there exist a minimal admissible quadruple (X, C_{1}, C_{2}, σ) with C_{1}^{2} $=1, C_{2}^{2}=-1$ and a proper flat family $\pi: \mathcal{S} \rightarrow D$ over the unit disc with $a \pi$-flat Cartier divisor \mathscr{D} of \mathcal{S} such that
6) $\mathcal{S}_{0} \simeq X / \sigma, \mathcal{S}_{t_{0}} \simeq S$ for some t_{0} in D,
7) $\mathcal{S}_{t}(t \neq 0)$ is a minimal surface with a GSS,
8) \mathscr{D}_{t} is the maximal reduced effective divisor of $\mathcal{S}_{t}(t \neq 0)$ whose dual graph is independent of $t(\neq 0)$.
§3. Curves on surfaces with GSS's.
(3.1) Theorem (Kato, see [1], [6]). Let S be a surface with a GSS. Then $b_{2}(S)=\#$ (irreducible rational curves on S).
(3.2) Theorem. Any minimal surface with a GSS and $b_{2}>0$ has a cycle of rational curves and only finitely many irreducible curves. A reduced effective divisor D is the maximal reduced effective divisor on a minimal surface with a GSS and $b_{2}>0$ if and only if D is one of the following;
9) $D=E+Z, E$ is a nonsingular elliptic curve with $E^{2}=-n, Z$ is a cycle of n rational curves Z_{ν} with $Z_{\nu}^{2}=-2(n \geqq 2), Z_{1}^{2}=0(n=1)$,
10) $D=A+B, A$ and B are cycles of rational curves and

$$
\begin{aligned}
& \operatorname{Zykel}(A)=(p_{1}, \underbrace{2, \cdots, 2}_{\left(q_{1}-3\right)}, p_{2}, \cdots, p_{n}, 2 \underbrace{2, \cdots, 2}_{\left(q_{n}-3\right)}) \\
& \operatorname{Zykel}(B)=(\underbrace{2, \cdots, 2}_{\left(p_{1}-3\right)}, q_{1}, \cdots, q_{n-1}, \underbrace{2, \cdots, 2}_{\left(p_{n}-3\right)}, q_{n})
\end{aligned}
$$

for certain positive integers $p_{j}, q_{j}(\geqq 3), n(\geqq 1)$.
3) D is a cycle of n rational curves C_{ν} with $C_{\nu}^{2}=-2,(n \geqq 2), C_{1}^{2}=0$ ($n=1$),
4) D is a cycle C of rational curve with $C^{2}<0$ and

$$
\begin{aligned}
& Z y k e l(C)=(p_{1}, \underbrace{2, \cdots, 2}_{\left(q_{1}-3\right)}, p_{2}, \cdots, p_{n}, \underbrace{, \cdots, 2}_{\left(q_{n}-3\right)}, p_{n+1} \\
&\underbrace{2, \cdots, 2}_{\left(p_{1}-3\right)}, q_{1}, \underbrace{2, \cdots, 2}_{\left(p_{2}-3\right)}, q_{2}, 2, \cdots, 2, q_{n}, \underbrace{2, \cdots, 2}_{\left(p_{n+1}-3\right)})
\end{aligned}
$$

for certain positive integers $p_{j}, q_{j}(\geqq 3), n(\geqq 1)$,
5) there is a decomposition $D=\sum_{k=1}^{m}\left(C_{k}+D_{k}\right)$ such that
i) $C^{\prime}=\sum_{k=1}^{m} C_{k}$ is a cycle of rational curves with $\left(C^{\prime}\right)^{2}<0, C_{k}(m \geqq 2)$ and D_{k} are nonempty chains of nonsingular rational curves, C_{1} is a cycle of rational curves $(m=1)$
ii) C_{k} and D_{k} are dual in the sense that

$$
\begin{aligned}
& Z y k e l\left(C_{k}\right)=(p_{1}, \underbrace{2, \cdots, 2}_{\left(q_{1}-3\right)}, p_{2}, \underbrace{2, \cdots, 2}_{\left(q_{2}-3\right)}, \cdots, p_{n-1}, 2, \cdots, 2, p_{\left(q_{n-1}-3\right)}^{2,}) \\
& Z y \operatorname{kel}\left(D_{k}\right)=(\underbrace{2, \cdots, 2}_{\left(p_{n}-2\right)}, q_{n-1}, \underbrace{2, \cdots, 2}_{\left(p_{n-1}-3\right)}, q_{n-2}, \cdots, q_{1}, \underbrace{2, \cdots, 2}_{\left(p_{1}-3\right)})
\end{aligned}
$$

for certain positive integers $n(\geqq 1), p_{n}(\geqq 2), p_{j}, q_{f}(\geqq 3,1 \leqq j \leqq n-1)$ or

$$
\begin{aligned}
& Z y k e l\left(C_{k}\right)=(p_{1}, \underbrace{2, \cdots, 2}_{\left(q_{1}-3\right)}, p_{2}, \underbrace{2, \cdots, 2}_{\left(q_{2}-3\right)}, \cdots, p_{n-1}, \underbrace{2, \cdots, 2, p_{n}}_{\left(q_{n-1}-3\right)}) \\
& \operatorname{Zykel}\left(D_{k}\right)=(\underbrace{2, \cdots, 2}_{\left(p_{n}-2\right)}, q_{n-1}, \underbrace{2, \cdots, 2}_{\left(p_{n-1}-3\right)}, q_{n-2}, \cdots, q_{2}, \underbrace{2, \cdots, 2}_{\left(p_{2}-3\right)})
\end{aligned}
$$

for certain positive integers $n(\geqq 2), p_{1}=2, p_{j}, q_{j}, q_{1}(\geqq 3,2 \leqq j \leqq n$
-1) $p_{n}(\geqq 2)$ where p_{j} and q_{j} depend on $k, p_{n} \geqq 3$ if $p_{1}=2, n=2$
iii) $\quad C_{k} D_{j-1}=\delta_{j k}, C_{k} C_{k+1}=1(j, k \in Z / m Z)$, and the last irreducible component of C_{k} and the first of D_{k} meet C_{k+1} at distinct points of the first irreducible component of C_{k+1} transversally, if $m \geqq 2$. If $m=1$, then $C_{1} D_{1}=1$ and the first irreducible component of C_{1} meet the first of D_{1}.
(3.3) Following [1] we define an invariant $\sigma(S)$ by $\sigma(S)=-\sum_{E: \text { irred curve on } S} E^{2}+2 \#$ \{rational curves with nodes $\}$.
§4. A partial classification and related results.
(4.1) Theorem [2]+[6]. Let S be a minimal surface with a GSS and $b_{2}>0$. Then the following are true.

1) If S has an elliptic curve and a cycle of rational curves, then S is a parabolic Inoue surface.
2) If S has two cycles of rational curves, then S is a hyperbolic Inoue surface.
3) If S has a cycle C of n rational curves with $C^{2}=0$, then S is an exceptional compactification of an affine bundle of degree n.
4) If S has a cycle C of rational curves with $C^{2}<0$ and there is no curve except irreducible components of C, then S is a half Inoue surface.

See [2], [5] for the definition of exceptional compactifications.
(4.2) Theorem, Let S be a minimal surface with a GSS and $b_{2}>0$. Then $3 b_{2} \geqq \sigma(S) \geqq 2 b_{2}$. (See [1].) Moreover

1) $\sigma(S)=3 b_{2}$ if and only if S is either a parabolic or a hyperbolic or a half Inoue surface, and
2) $\sigma(S)=2 b_{2}$ if and only if S is an exceptional compactification of an affine bundle of degree b_{2}.
(4.3) Theorem. Let S be a VII_{0} surface with $b_{2}>0, D$ the maximal reduced divisor of S. Suppose that D is connected. Then $\sigma(S) \leqq 3 b_{2}$. Equality holds if and only if S is a half Inoue surface.

References

[1] G. Dloussky: Sur les surfaces compactes de la classe VII_{0} contenant une coquille sphérique globale. C. R. Acad. Sc. Paris, 292, 727-730 (1981).
[2] I. Enoki: Surfaces of class VII_{0} with curves. Tohoku Math. J., 33, 453-492 (1981).
[3] Ma. Kato: Compact complex manifolds containing global spherical shells I. Proc. Int. Symp. Algebraic Geometry, Kyoto, pp. 45-84 (1977).
[4] K. Kodaira: On the structure of compact complex analytic surfaces III. Amer. J. Math., 90, 55-83 (1968).
[5] I. Nakamura: On surfaces of class VII_{0} with curves. Proc. Japan Acad., 58A, 380-383 (1982).
[6] --: Rational degeneration of VII_{0} surfaces (preprint).
[7] T. Oda: Torus Embeddings and Applications. Tata Inst. Lecture Notes, Bombay (1978).

