10. On Surfaces of Class VII₀ with Global Spherical Shells

By Iku NAKAMURA Department of Mathematics, Hokkaido University (Communicated by Kunihiko Kodaira, M. J. A., Feb. 12, 1983)

Introduction. A minimal compact complex surface is called a surface of class VII₀ or in short a VII₀ surface if b_1 (the first Betti number) is equal to 1. Some VII₀ surfaces, i.e., Hopf surfaces and Inoue surfaces with $b_2 > 0$ are smooth deformations of singular rational surfaces, each with a double curve, as was observed by [4], [7]. The purpose of this note is to report some results on smooth deformations of singular rational surfaces, each with a double curve [6]. As an application of them we study VII₀ surfaces with global spherical shells in the sense of [3]. In §4 we shall give a partial classification of surfaces with global spherical shells by using the results of [2], [5].

Notations. We denote by S a compact complex surface, by \mathcal{O}_S the structure sheaf of S, by b_i the *i*-th Betti number of S. For a singular complex surface Y we denote also by \mathcal{O}_Y the structure sheaf of Y. For two divisors C and C' we denote by CC' the intersection number of C and C', by C^2 the selfintersection number of C. We denote by \mathcal{S}_t a fiber $\pi^{-1}(t)$ $(t \in D)$ of a morphism $\pi: S \to D$, by \mathcal{D}_t the intersection of \mathcal{D} and \mathcal{S}_t for a π -flat Cartier divisor \mathcal{D} of \mathcal{S} . We denote by F_m a Hirzebruch surface Proj $(\mathcal{O}_{P1} \oplus \mathcal{O}_{P1}(m))$. We mean by a chain of rational curves a reduced divisor D with a decomposition $D = \sum_{\nu=1}^r D_{\nu}$ such that D_{ν} is a nonsingular rational curve, $D_{\nu}D_{\nu+1}=1$, $D_{\nu}D_{\mu}=0$ $(\nu \neq \mu, \mu \pm 1)$. Then $Zykel(D)=(-D_{11}^2, \cdots, -D_r^2)$. For a cycle $C=\sum_{\nu=1}^r C_{\nu}$ of rational curves with $C_{\nu}C_{\nu+1}=1$ ($\nu \in Z/rZ$), we denote $Zykel(C) = (-C_{11}^2, \cdots, -C_r^2)$ $(r \geq 2)$; $(-C_1^2+2)$ (r=1). See [5] for the definition of a cycle of rational curves.

§1. Global spherical shells.

(1.1) Definition [3]. A subset Σ of a compact complex surface S is called a global spherical shell (abbr. a GSS) if

1) Σ is a spherical shell $\{(z_1, z_2) \in \mathbb{C}^2; r < |z_1^2| + |z_2^2| < R\}$ for some positive numbers r and R, and

2) the complement $S - \Sigma$ of Σ in S is connected.

(1.2) Theorem [3]. Any surface with a GSS is a deformation of a blown-up primary Hopf surface with $b_1=1$. A minimal surface with a GSS is a primary Hopf surface if and only if $b_2=0$.

(1.3) Theorem [3], [6]. Any Inoue surface with $b_2 > 0$ contains a GSS.

See [5] for the definition of Inoue surfaces with $b_2 > 0$.

§2. Smooth deformations of singular rational surfaces.

(2.1) Definition. A triple (X, C_1, C_2) or a quadruple (X, C_1, C_2, σ) is called *admissible* if

1) X is a nonsingular compact complex surface,

2) C_{ν} ($\nu=1,2$) is a nonsingular rational curve on X with $C_1^2>0$, $C_1C_2=0$, $C_1^2+C_2^2\geq 0$,

3) σ is an isomorphism of C_1 onto C_2 .

Moreover we call the triple or the quadruple *minimal* if any exceptional curve of the first kind meets either C_1 or C_2 .

By identifying C_1 and C_2 by σ , we have a singular surface $Y = X/\sigma$ with a double curve \overline{C} , a nonsingular rational curve, along which Y is locally given by xy=0 with suitable local coordinates.

(2.2) Theorem [6]. Any minimal admissible triple (X, C_1, C_2) with $C_1^2 = m$, $C_2^2 = -n$ $(m \ge n > 0)$ is one of the following;

1) m=n=1, X is a finite succession of blowing-ups of P^2 with centers over the previous centers outside of a fixed line l, C_1 and C_2 are a proper transform of l and the exceptional curve of the last blowing-up with $C_2^2 = -1$.

2) $m \ge 2$, X is a finite succession of blowing-ups of a Hirzebruch surface F_k of degree k ($k \equiv m \mod 2$, $k \le m$) with centers over the previous centers outside of a fixed section τ of F_k over P^1 with $\tau^2 = m$, C_1 and C_2 are proper transforms of τ and an exceptional curve of the first kind by one of the blowing-ups.

3) $m=n\geq 2$, $X=F_m$, C_1 and C_2 are sections of F_m over P^1 .

4) m=4, X is a finite succession of blowing-ups of P^2 with centers over the previous centers outside of a quadric q, C_1 and C_2 are proper transforms of q and an exceptional curve of the first kind by one of the blowing-ups.

5) m=n=2, X is a three-times blowing-up $Q_{l \cap q}Q_p(P^2)$ of P^2 , C_1 and C_2 are proper transforms of a quadric q and a line l where P is a point of $l-l \cap q$, l and q may have a contact.

(2.3) Theorem [6]. Let (X, C_1, C_2, σ) be a minimal admissible quadruple. Then $Y = X/\sigma$ is smoothable by flat deformation. More precisely, $\operatorname{Ext}^2_{\mathcal{O}_Y}(L_Y, \mathcal{O}_Y) = 0$ where L_Y is the cotangent complex of Y. And there exists a proper flat family $\pi: S \to D$ over the disc D such that $S_0 = Y$, S_t $(t \neq 0)$ is a smooth surface with $b_1 = 1$. If moreover C_1^2 $= 1, C_2^2 = -1$, then S_t $(t \neq 0)$ is a VII₀ surface with a GSS for |t| small.

(2.4) Theorem [6]. Let S be a minimal surface with a GSS. Then there exist a minimal admissible quadruple (X, C_1, C_2, σ) with C_1^2 =1, $C_2^2 = -1$ and a proper flat family $\pi: S \rightarrow D$ over the unit disc with a π -flat Cartier divisor \mathcal{D} of S such that No. 2]

1) $S_0 \simeq X/\sigma$, $S_{t_0} \simeq S$ for some t_0 in D,

2) $S_t (t \neq 0)$ is a minimal surface with a GSS,

3) \mathcal{D}_{ι} is the maximal reduced effective divisor of \mathcal{S}_{ι} $(t \neq 0)$ whose dual graph is independent of $t \ (\neq 0)$.

§3. Curves on surfaces with GSS's.

(3.1) Theorem (Kato, see [1], [6]). Let S be a surface with a GSS. Then $b_2(S) = \#$ (irreducible rational curves on S).

(3.2) Theorem. Any minimal surface with a GSS and $b_2 > 0$ has a cycle of rational curves and only finitely many irreducible curves. A reduced effective divisor D is the maximal reduced effective divisor on a minimal surface with a GSS and $b_2 > 0$ if and only if D is one of the following;

1) D=E+Z, E is a nonsingular elliptic curve with $E^2=-n$, Z is a cycle of n rational curves Z_{ν} with $Z_{\nu}^2=-2$ $(n\geq 2)$, $Z_1^2=0$ (n=1),

2) D=A+B, A and B are cycles of rational curves and

$$Zykel (A) = (p_1, \underbrace{2, \dots, 2}_{(q_1-3)}, p_2, \dots, p_n, \underbrace{2, \dots, 2}_{(q_n-3)})$$
$$Zykel (B) = (\underbrace{2, \dots, 2}_{(p_1-3)}, q_1, \dots, q_{n-1}, \underbrace{2, \dots, 2}_{(p_n-3)}, q_n)$$

for certain positive integers p_j , q_j (≥ 3), n (≥ 1).

3) D is a cycle of n rational curves C_{ν} with $C_{\nu}^2 = -2$, $(n \ge 2)$, $C_1^2 = 0$ (n=1),

4) D is a cycle C of rational curve with $C^2 < 0$ and $Zykel(C) = (p_1, \underbrace{2, \dots, 2}_{(q_1-3)}, p_2, \dots, p_n, \underbrace{2, \dots, 2}_{(q_n-3)}, p_{n+1}, \underbrace{2, \dots, 2}_{(p_1-3)}, q_1, \underbrace{2, \dots, 2}_{(p_2-3)}, q_2, 2, \dots, 2, q_n, \underbrace{2, \dots, 2}_{(p_n+1-3)})$

for certain positive integers p_j , q_j (≥ 3), n (≥ 1),

5) there is a decomposition $D = \sum_{k=1}^{m} (C_k + D_k)$ such that i) $C' = \sum_{k=1}^{m} C_k$ is a cycle of rational curves with $(C')^2 < 0$, C_k $(m \ge 2)$ and D_k are nonempty chains of nonsingular rational curves, C_1 is a cycle of rational curves (m=1)

ii) C_k and D_k are dual in the sense that

$$Zykel(C_{k}) = (p_{1}, \underbrace{2, \dots, 2}_{(q_{1}-3)}, p_{2}, \underbrace{2, \dots, 2}_{(q_{2}-3)}, \dots, p_{n-1}, \underbrace{2, \dots, 2}_{(q_{n-1}-3)}, p_{n})$$

$$Zykel(D_{k}) = (\underbrace{2, \dots, 2}_{(p_{n}-2)}, q_{n-1}, \underbrace{2, \dots, 2}_{(p_{n-1}-3)}, q_{n-2}, \dots, q_{1}, \underbrace{2, \dots, 2}_{(p_{1}-3)}, 2)$$

for certain positive integers $n (\geq 1)$, $p_n (\geq 2)$, p_j , $q_j (\geq 3, 1 \leq j \leq n-1)$ or $Z_{nkel}(C) = (n - 2 \dots 2, n - 2, \dots, 2, \dots, 2, n)$

$$Zykel(C_{k}) = (p_{1}, \underbrace{2, \dots, 2}_{(q_{1}-3)}, p_{2}, \underbrace{2, \dots, 2}_{(q_{2}-3)}, \dots, p_{n-1}, \underbrace{2, \dots, 2}_{(q_{n-1}-3)}, p_{n}]$$

$$Zykel(D_{k}) = (\underbrace{2, \dots, 2}_{(p_{n}-2)}, q_{n-1}, \underbrace{2, \dots, 2}_{(p_{n-1}-3)}, q_{n-2}, \dots, q_{2}, \underbrace{2, \dots, 2}_{(p_{2}-3)})$$

for certain positive integers $n (\geq 2)$, $p_1=2$, p_j , q_j , $q_1 (\geq 3, 2 \leq j \leq n -1) p_n (\geq 2)$ where p_j and q_j depend on k, $p_n \geq 3$ if $p_1=2$, n=2

I. NAKAMURA

iii) $C_k D_{j-1} = \delta_{jk}$, $C_k C_{k+1} = 1$ $(j, k \in \mathbb{Z}/m\mathbb{Z})$, and the last irreducible component of C_k and the first of D_k meet C_{k+1} at distinct points of the first irreducible component of C_{k+1} transversally, if $m \ge 2$. If m = 1, then $C_1 D_1 = 1$ and the first irreducible component of C_1 meet the first of D_1 .

(3.3) Following [1] we define an invariant $\sigma(S)$ by

 $\sigma(S) = -\sum_{E: \text{ irred curve on } S} E^2 + 2\# \{ \text{rational curves with nodes} \}.$

§4. A partial classification and related results.

(4.1) Theorem [2]+[6]. Let S be a minimal surface with a GSS and $b_2>0$. Then the following are true.

1) If S has an elliptic curve and a cycle of rational curves, then S is a parabolic Inoue surface.

2) If S has two cycles of rational curves, then S is a hyperbolic Inoue surface.

3) If S has a cycle C of n rational curves with $C^2=0$, then S is an exceptional compactification of an affine bundle of degree n.

4) If S has a cycle C of rational curves with $C^2 < 0$ and there is no curve except irreducible components of C, then S is a half Inoue surface.

See [2], [5] for the definition of exceptional compactifications.

(4.2) Theorem. Let S be a minimal surface with a GSS and $b_2 > 0$. Then $3b_2 \ge \sigma(S) \ge 2b_2$. (See [1].) Moreover

1) $\sigma(S)=3b_2$ if and only if S is either a parabolic or a hyperbolic or a half Inoue surface, and

2) $\sigma(S)=2b_2$ if and only if S is an exceptional compactification of an affine bundle of degree b_2 .

(4.3) Theorem. Let S be a VII₀ surface with $b_2>0$, D the maximal reduced divisor of S. Suppose that D is connected. Then $\sigma(S) \leq 3b_2$. Equality holds if and only if S is a half Inoue surface.

References

- G. Dloussky: Sur les surfaces compactes de la classe VII₀ contenant une coquille sphérique globale. C. R. Acad. Sc. Paris, **292**, 727-730 (1981).
- [2] I. Enoki: Surfaces of class VII₀ with curves. Tohoku Math. J., 33, 453-492 (1981).
- [3] Ma. Kato: Compact complex manifolds containing global spherical shells I. Proc. Int. Symp. Algebraic Geometry, Kyoto, pp. 45-84 (1977).
- [4] K. Kodaira: On the structure of compact complex analytic surfaces III. Amer. J. Math., 90, 55-83 (1968).
- [5] I. Nakamura: On surfaces of class VII₀ with curves. Proc. Japan Acad., 58A, 380-383 (1982).
- [6] ——: Rational degeneration of VII_0 surfaces (preprint).
- [7] T. Oda: Torus Embeddings and Applications. Tata Inst. Lecture Notes, Bombay (1978).