28. An Algebraic Computation of the Alexander Polynomial of a Plane Algebraic Curve

By Toshitake Kohno
Department of Mathematics, Nagoya University
(Communicated by Kunihiko Kodaira, m. J. a., March 12, 1983)

1. Introduction and the statement of the result. Let C be the algebraic curve in C^{2} defined by a reduced polynomial f. We denote by $\left.\Omega_{C^{2}}^{\circ} * C\right)$ the algebra of the rational differential forms on C^{2} which are holomorphic on the complement $X=C^{2}-C$. Let $\nabla_{\alpha}: \Omega_{c_{2}^{2}}^{j}(* C)$ $\rightarrow \Omega_{C_{2}^{2}}^{j+1}(* C)$ be the regular connection in the sense of Deligne ([1]) defined by $\nabla_{\alpha} \varphi=d \varphi+\alpha d \log f \wedge \varphi$ with a real number α. We denote by $H^{j}\left(\Omega_{c_{2}}^{*}(* C), \nabla_{\alpha}\right)$ the j-th cohomology group of the de Rham complex

$$
\cdots \longrightarrow \Omega_{C_{2}^{2}}^{j}(* C) \xrightarrow{\nabla_{\alpha}} \Omega_{C^{2}}^{j+1}(* C) \longrightarrow \cdots
$$

In [5] A. Libgober defined the Alexander polynomial of a plane algebraic curve. Let us review the definition.

Definition 1.1. Let \bar{C} be an irreducible algebraic curve in P^{2}. We take a complex line H_{∞} such that H_{∞} intersects \bar{C} transversally. Let C denote $\bar{C} \cap\left(\boldsymbol{P}^{2}-H_{\infty}\right)$ and let X be the complement of C in $\boldsymbol{P}^{2}-H_{\infty}$.

Let $p: X^{a b} \rightarrow X$ be an infinite cyclic covering of X. Then the ring of the Laurent polynomials $C\left[t^{-1}, t\right]=\Lambda$ operates on $H^{1}\left(X^{a b} ; C\right)$ by means of the deck transformations. The Λ-module $H^{1}\left(X^{a b} ; C\right)$ has a presentation of the form

$$
\Lambda /_{\left(f_{1}(t)\right)} \oplus \cdots \oplus \Lambda /_{\left(f_{k}(t)\right)}
$$

with some polynomials $f_{1}(t), \cdots, f_{k}(t)$. We call the product $\prod_{j=1}^{k} f_{j}(t)$ the Alexander polynomial of \bar{C} (or C).

Remarks 1.2. i) In the proof of Theorem (1.3), we show that $\operatorname{dim}_{C} H^{1}\left(X^{a b} ; C\right)$ is finite.
ii) The Alexander polynomial of the curve C is determined up to unit and does not depend on the choice of a line H_{∞}.

We have the following
Theorem 1.3. Let $C \cap C^{2}$ be an irreducible algebraic curve which intersects transversally with the line at infinity. Let h_{α} denote $\operatorname{dim}_{C} H^{1}\left(\Omega_{c_{2}}^{*}\left(* C, \nabla_{\alpha}\right)\right.$ for a real number α. Let $\Delta_{c}(t)$ be the Alexander polynomial of C. Then we have

$$
\Delta_{C}(t)=\prod_{0<\alpha<1}(t-\exp 2 \pi \sqrt{-1} \alpha)^{h_{\alpha}}
$$

Moreover the numbers α with $h_{\alpha} \neq 0$ are rational numbers with $n \alpha \in \boldsymbol{Z}$, where we denote by n the degree of our curve C.
2. Proof of the theorem. Let \bar{C} be the algebraic closure of C
in P^{2} and let X_{n} be the n-fold cyclic covering of $X=C^{2}-C$ defined by $X_{n}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in C^{3} ; x_{3}^{n}=f\left(x_{1}, x_{2}\right), x_{3} \neq 0\right\}$. Let \bar{X}_{n} be the algebraic closure of X_{n} in \boldsymbol{P}^{3}. Thus, we obtain the branched covering $\pi: \bar{X}_{n} \rightarrow \boldsymbol{P}^{2}$ branched along \bar{C}. Let $\mu: V \rightarrow \bar{X}_{n}$ be a resolution of singularity. We put D $=\mu^{-1}\left(\pi^{-1}(\bar{C})\right)$. Let $i: \bar{X}_{n}-\pi^{-1}(\bar{C}) \rightarrow V$ be the injection defined by $i=\left(\left.\mu\right|_{V-D}\right)^{-1}$. We have the following proposition due to R. Randell.

Proposition 2.1 (Randell [7]). The injection $i: \bar{X}_{n}-\pi^{-1}(\bar{C}) \rightarrow V$ induces an isomorphism $i^{*}: H^{1}(V ; \boldsymbol{Q}) \cong H^{1}\left(\bar{X}_{n}-\pi^{-1}(\bar{C}) ; \boldsymbol{Q}\right)$.

Let γ be a generator of the group of the deck transformations of the cyclic covering $p_{n}: X_{n} \rightarrow X$. We denote by $H^{1}\left(X_{n} ; C\right)_{k}$ the subspace of $H^{1}\left(X_{n} ; C\right)$ defined by

$$
H^{1}(X ; C)_{k}=\left\{\omega \in H^{1}\left(X_{n} ; C\right) ; \gamma^{*} \omega=\exp 2 \pi \sqrt{-1}(k / n)\right\} .
$$

Lemma 2.2. Let $j: X_{n} \longleftrightarrow \bar{X}_{n}-\pi^{-1}(\bar{C})$ be the inclusion. Then, the induced homomorphism $j^{*}: H^{1}\left(\bar{X}_{n}-\pi^{-1}(\bar{C}) ; C\right)$ is injective and image $j^{*}=\oplus_{0<k \leq n-1} H^{1}\left(X_{n} ; C\right)_{k}$.

Proof. Let H_{∞} be the line at infinity. From the cohomology exact sequence of the pair ($\left.\bar{X}_{n}-\pi^{-1}(\bar{C}), X_{n}\right)$ and the Thom isomorphism $H^{k}\left(\bar{X}_{n}-\pi^{-1}(\bar{C}), X_{n}\right) \cong H^{k-2}\left(\pi^{-1}\left(H_{\infty}-\bar{C}\right)\right.$), we have the injectivity of j^{*}. We obtain the exact sequence

$$
0 \longrightarrow H^{1}\left(\bar{X}_{n}-\pi^{-1}(\bar{C})\right) \xrightarrow{j^{*}} H^{1}\left(X_{n}\right) \longrightarrow H^{2}\left(\bar{X}_{n}-\pi^{-1}(\bar{C}), X_{n}\right) \longrightarrow 0 .
$$

On the other hand $H^{1}\left(X_{n} ; C\right)_{0}=C$, which is represented by $d \log f$. This completes the proof of the second assertion.

Let $\bar{\omega}: X^{a b} \rightarrow X_{n}$ be the covering map such that $p_{n} \circ \bar{\omega}=p$.
Lemma 2.3. The covering map $\bar{\omega}$ induces an injection

$$
\bar{\omega}^{*}: \underset{1 \leq k \leq n-1}{\oplus} H^{1}\left(X_{n} ; C\right)_{k} \longrightarrow H^{1}\left(X^{a b} ; C\right) .
$$

Proof. Let $[\omega]$ be an element of $H^{1}\left(X_{n} ; C\right)_{k}$ such that $\bar{\omega}^{*} \omega=d f$ for some function f on $X^{a b}$. We have $\gamma^{*} f=\exp 2 \pi \sqrt{-1}(k / n) f+c$ for some constant c. If $k \neq 0$, we put $g=f+c(\exp 2 \pi \sqrt{-1}(k / n)-1)^{-1}$ which satisfies $d g=\bar{\omega}^{*} \omega$.

We put $\tilde{C}=\pi^{-1}(C)$. Let $\Omega^{\cdot}(* \tilde{C})$ be the algebra of rational 1-forms on the surface $x_{3}^{n}=f\left(x_{1}, x_{2}\right)$ which have poles at most along \tilde{C}. Let $\Omega^{\cdot}\left({ }^{*} \tilde{C}\right)[k / n]$ be the vector space of the rational forms $\varphi \in \Omega^{*}(* \tilde{C})$ such that $\gamma^{*} \varphi=\exp 2 \pi \sqrt{-1}(k / n) \varphi$. By means of the comparison theorem of Grothendieck-Daligne [2], we have the following isomorphism

$$
\begin{equation*}
H^{j}\left(\Omega \cdot(* \tilde{C})[k / n] \cong H^{j}\left(X_{n} ; C\right)_{k}\right. \tag{2.4}
\end{equation*}
$$

On the other hand, we have the following commutative diagram.

where the homomorphism φ is defined by $\varphi(\omega)=f^{\alpha} \omega$ for $\omega \in \Omega_{c_{2}^{2}}^{j}(* C)$. This homomorphism induces the following isomorphism

$$
H^{j}\left(\Omega_{c_{2}^{2}}^{*}(* C), \nabla_{\alpha}\right) \cong H^{j}\left(X_{n} ; C\right)_{\alpha} .
$$

Combining (2.1)-(2.5), we get the following commutative diagram.

Proposition 2.7. The homomorphism

$$
\bar{\omega}^{*} \circ j^{*} \circ i^{*}: H^{1}(V ; C) \longrightarrow H^{1}\left(X^{a b} ; C\right)
$$

is an isomorphism.
Proof. From (2.1)-(2.3), the homomorphism $\bar{\omega}^{*} \circ j^{*} \circ i^{*}$ is injective. Let q be the irregularity of V. It suffices to prove that $\operatorname{dim} H^{1}\left(X^{a b} ; C\right)=2 q$.

Since \bar{C} intersects H_{∞} transversally, we have the following exact sequence of the central extension ([6], Lemma 1).

$$
0 \longrightarrow Z \longrightarrow \pi_{1}\left(C^{2}-C, *\right) \longrightarrow \pi_{1}\left(P^{2}-\bar{C}, *\right) \longrightarrow 1 .
$$

Hence, the following isomorphism follows

$$
\left[\pi_{1}\left(C^{2}-C, *\right), \pi_{1}\left(C^{2}-C, *\right)\right] \cong\left[\pi_{1}\left(\boldsymbol{P}^{2}-\bar{C}, *\right), \pi_{1}\left(\boldsymbol{P}^{2}-\bar{C}, *\right)\right] .
$$

By using Proposition 2.1, we have $\operatorname{dim} H^{1}\left(X^{a b} ; C\right)=2 q$.
Thus, we have the following isomorphisms.

$$
H^{1}\left(X^{a b} ; C\right) \cong \bigoplus_{0<k \leq n-1} H^{1}\left(X_{n} ; C\right)_{k} \cong \bigoplus_{0<k \leq n-1} H^{1}\left(\Omega_{C_{2}}^{*}(* C), \nabla_{k / n}\right)
$$

This completes the proof of Theorem 1.3.
3. Discussion and examples. Let ρ_{α} be the representation of $\pi_{1}\left(C^{2}-C, *\right)$ defined by

$$
\begin{aligned}
\rho_{\alpha}: \pi_{1}\left(C^{2}-C, *\right) \longrightarrow & H_{1}\left(C^{2}-C ; Z\right) \longrightarrow C^{*} \\
& \| 2 \\
& \| \ni 1 \longmapsto \exp 2 \pi \sqrt{-1} \alpha .
\end{aligned}
$$

We denote by $\mathscr{V}(\alpha)$ the flat vector bundle associated with the representation ρ_{α}. We have an isomorphism

$$
H^{j}\left(\Omega_{c_{2}}^{\cdot}(* C), \nabla_{\alpha}\right) \cong H^{j}(X ; \mathscr{V}(\alpha))
$$

Hence, our theorom can also be formulated by using $\mathscr{V}(\alpha)$.
In [4] we prove that $h_{\alpha}=0$ if $\exp 2 \pi \sqrt{-1} \alpha$ is not one of the eigenvalues of the Milnor monodromies at the singular points of C. In particular, if we assume that C posseses only cusps and nodes as singularities, $\left.\oplus_{0<\alpha<1} H^{1}\left(\Omega_{c_{2}}^{*} * C\right), \nabla_{\alpha}\right)$ is ismorphic to

$$
H^{1}\left(\Omega_{C_{2}^{2}}^{\cdot}(* C), \nabla_{1 / 8}\right) \oplus H^{1}\left(\Omega_{c^{2}}^{*}(* C), \nabla_{-1 / 8}\right) .
$$

The Alexander polynomial of C is $\left(t^{2}-t+1\right)^{q}$, where q is the irregu-
larity in the sense of the previous section. We have $q \leqslant$ the number of cusps.
For the proof of these statements see [4].
In [10], Zariski studies the irregularity by means of linear systems. In our point of view $q=\operatorname{dim} H^{1}\left(\Omega_{c^{2}}^{*}(* C), \nabla_{1 / 8}\right)$.

Let $\chi(X)$ be the Euler characteristic of X. We have

$$
\operatorname{dim} H^{1}\left(\Omega_{c^{2}}^{\circ}(* C), \nabla_{\alpha}\right)-\operatorname{dim} H^{2}\left(\Omega_{c^{2}}^{*}(* C), \nabla_{\alpha}\right)=\chi(X) \quad \text { for any } \alpha .
$$

In particular, if we assume that C has only cusps and nodes as singularities, we have

$$
\left.\operatorname{dim} H^{2}\left(\Omega_{c_{2}^{2}}^{*} * C\right), \nabla_{\alpha}\right)= \begin{cases}\chi(X) & \text { if } \alpha \equiv \pm 1 / 6 \bmod . Z \\ \chi(X)+q & \text { otherwise } .\end{cases}
$$

Example 3.1. Let X be the complement of the curve defined by $x^{2}-y^{3}=0$ in C^{2}. We have $\operatorname{dim} H^{1}\left(X^{a b} ; C\right)=2$ and $H^{1}\left(X^{a b} ; C\right)$ is isomorphic to

$$
\left.H^{1}\left(\Omega_{C_{2}^{2}}^{\cdot} * C\right), \nabla_{1 / 8}\right) \oplus H^{1}\left(\Omega_{c_{2}^{2}}^{*}(* C), \nabla_{-1 / 8}\right)
$$

and is represented by the differential forms $\omega_{1}=\left(x^{2}-y^{3}\right)^{-1}(-(y / 3) d x$ $+(x / 2) d y), \omega_{2}=y \omega_{1}$.

Example 3.2. Let C be the curve defined by

$$
f=\left(x^{2}+y^{2}\right)^{3}+\left(y^{3}+1\right)^{2}=0 \quad \text { (see [9]). }
$$

Then, $H^{1}\left(\Omega_{c_{2}}^{*}(* C), \nabla_{1 / 8}\right)$ and $H^{1}\left(\Omega_{c_{2}}^{*}(* C), \nabla_{-1 / 8}\right)$ have dimension 1 and are generated respectively by $\omega_{1}=f^{-1}\left(x\left(y^{3}+1\right) d x+\left(y\left(y^{3}+1\right)-y^{2}\left(x^{2}+y^{2}\right)\right) d y\right)$ and $\omega_{2}=\left(y^{3}+1\right) \omega_{1}$. The Alexander polynomial is $t^{2}-t+1$.

References

[1] Deligne, P.: Equations différentielles à points singuliers réguliers III. Lect. Note in Math., vol. 163, Springer (1970).
[2] Grothendieck, A.: On the de Rham cohomology of algebraic varieties. Publ. Math. I.H.E.S., 29, 95-103 (1966).
[3] Kohno, T.: Differential forms and the fundamental group of the complement of hypersurfaces (to appear in Proc. of pure Math., A.M.S.).
[4] -: Etude algébrique du groupe fondamental du complément des hypersurfaces et problèmes de $K(\pi, 1)$. Thèse de 3ème Cycle, Université Paris VII (1982).
[5] Libgober, A.: Alexander polynomials of plane algebraic curves (1981) (preprint).
[6] Oka, M.: On the fundamental group of the complement of a reducible curve in P^{2}. J. London Math. Soc., 12, 239-252 (1976).
[7] Randell, R.: Some topology of Zariski surfaces. Lect. Note in Math., vol. 788, Springer, pp. 145-165 (1979).
[8] Sullivan, D.: Infinitesimal computations in topology. Publ. Math. I.H.E.S., 47, 269-331 (1977).
[9] Zariski, O.: On the existence of algebraic functions of two variables possessing a given branched curve. Amer. J. Math., 51, 305-328 (1929).
[10] -: On the irregularity of cyclic multiple planes. Ann. of Math., 32, 131-141 (1931).

