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1. Let {X(t, w); 0_<t + oo} be a real valued separable, measur-
able, stochastically continuous self-similar process of order H0,
where "self-similar process" means that for any a0, {X(t)} and
{a-X(at)} have the same finite dimensional distribution. We will
denote it by X(t) -a-X(at). Set

Y(w)- sup [X(t, o)1.

Theorem 1. Let f(x) be a positive, continuous, non-decreasing

function defined on the positive half line. Assume that E[f(Y)] is
finite. Let (x) be a positive, continuous function defined on the posi-
tive half line which satisfies the following conditions;

( ) (x) is non-decreasing,
(ii) lim sup (x)/(x ) c< + oo,

n=l,2,...

and

(iii) (xf((x)))-’dx< + c.

Then, we have

lim IX(s’ o)1 <c a.s.
--.+ s(s)

Theorem 2. Let g(x) be a positive, continuous, non-increasing

function defined on the positive half line. Assume that E[g(Y)] is
finite. Let 4x(x) be a positive, continuous function defined on the posi-
tive half line which satisfies the following conditions;

( ) (x) is non-increasing,
and

( ii ) (xg(4x(x)))-dx< -I-

Then, we have

lim sup0,, IX(t, )1 _>1 a.s.
--.+ s"(s)

2. First, we prove the following

Lemma 1. If E[f(Y)] K + oo, then for x O, we have

P(suP,0, [x(t’ )l>-x) <-Klf(-Ex)"
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Proof. By self-similarity, we have
sup IX(t, )1’Y(o).
OKt

Therefore, by Chebyshev’s inequality,

P(sup IX(t, o)]_x) P(Y(o) :>2-"x) gg/f(2-nx).
k0t /

Proof of Theorem 1. Set x=() for >1 and

A=(; sup [X(t,w)[Xn}.OKtK

Then, by Lemma 1, we have
p(A)K/f(()),

and

P(A) C (xf((x)))-dx< +.
By Borel-Cantelli lemma, there exists n0() + with probability 1
such that

holds for all n_no((O).

sup IX(t,
OtK

Finally, by our assumption for , we have
Ix(s, )1 <

for n_no() and -_s_. This concludes that

lin/IX(s,o)l <c a.s.
s’(s)-

Q.E.D.

The proof for Theorem 2 is the same line as that of Theorem 1.
Lemma 2. /f E[g(Y)]-- K’ + c, then for x 0 we have

P(suP\o, IX(t, o) }<_x) <_K’/g(,-nx).
Proof of Theorem 2. Set y=’() and

Ot

Then, by Lemma 2, we have
P(B)K’/g((n)),

and

+
By Borel-Canelli lemma, there exists ()<+ wih robability 1
such

sup0, IX(t, )[

holds for sg+’. It follows that

lira sup0, IX(t, )] 1 a.s. Q.E.D.
+ s"(s)

We can give some examples which are applicable to our theo-
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rems; though, results themselves are known ([2]). Let {X(t,); 0_
-t-c} be a centered path continuous Gaussian self-similar process
of orderH0 with E[X(t)] 1. Then, by the theorem due to Fernique
[1, Theorem 1.3.3], we have

E[e-’i]< + oo

for >0. Therefore, setting (x)=/(2+3)log log (x+e), we have

x-e-(-’)(+)-’dx +oo for 2(1-D-.
Applying Theorem. 1, we have

lim IX(s, o)] <1 a.s.
+ sn/2 log log s

To apply Theorem, 2, let us consider a narrower class than the previous
example. Let (X(t,)} be a path continuous Gaussian process with
the covariance

E[X(t)X(s)]=([ t]"+ s ]"-I t-
for 0H_1/2. Then, by [2], we have

P(Y_y)_ce--’’.
This follows that E[g(y)]+c for g(x)=exp {(c--Dx-/"}, 0.
Therefore, setting (x)- (c.-- 2Dn (log log x)-" we have

(xg(4x(x)))_dx +
Applying Theorem. 2, we have

lim (log log s)n sup0t IX(t, o)] _c7, a.s.
s-+ 8H
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