23. The Exponential Calculus of Microdifferential Operators of Infinite Order. III

By Takashi A0ki
Department of Mathematics, University of Tokyo
(Communicated by Kôsaku Yosida, m. J. A., March 12, 1983)

1. Introduction. In this note we calculate r and c satisfying (1.1)

$$
: a e^{p}:: b e^{q}:=: c e^{r}: .
$$

Here a, b, p, q are given formal symbols (see [1]-[4] for the notation). When $a=b=1, p$ and q are symbols, such r and c are computed in [2] (cf. [3], [4]). In our present formula, we can take a, b, p, and q to be formal symbols, that is, infinite sums of symbols which satisfy some conditions.
2. Double formal symbols. Let X be an open set in C^{n} $=\left\{x=\left(x_{1}, \cdots, x_{n}\right) ; x_{j} \in \boldsymbol{C}, 1 \leq j \leq n\right\}, \dot{x}^{*}$ a point in the cotangent bundle $T^{*} X \simeq X \times C^{n}=\left\{(x, \xi) \in X \times C^{n}\right\}$ of X.

Definition 1. Let Ω be a conic neighborhood of \dot{x}^{*} in $T^{*} X$. Let

$$
\begin{equation*}
P\left(t_{1}, t_{2} ; x, \xi\right)=\sum_{j, k=0}^{\infty} t_{1}^{j} t_{2}^{k} P_{j k}(x, \xi) \tag{2.1}
\end{equation*}
$$

be a formal power series in $\left(t_{1}, t_{2}\right)$ with coefficients $P_{j_{k}}(x, \xi)$ $(j, k=0,1,2, \ldots)$ holomorphic in Ω. The formal series $P\left(t_{1}, t_{2} ; x, \xi\right)$ is said to be a double formal symbol defined in Ω if for any $\Omega^{\prime} \in \Omega$ there exist constants d, A which satisfy the following conditions:
(a) $0<d, 0<A<1$.
(b) For each $h>0$ there is a constant $C>0$ such that

$$
\begin{equation*}
\left|P_{j_{k}}(x, \xi)\right| \leq C A^{j+k} \exp (h|\xi|) \tag{2.2}
\end{equation*}
$$

for all $j, k=0,1,2, \cdots ;(x, \xi) \in \Omega^{\prime}$ satisfying $|\xi| \geq(j+k+1) d$.
The space of all double formal symbols defined in Ω is denoted by $\hat{S}_{2}(\Omega)$, which is a commutative ring under the addition and the product to be those of formal power series. Set $\hat{S}(\Omega)=\hat{S}_{1}(\Omega)=\left.\hat{S}_{2}(\Omega)\right|_{t_{2}=0}$, then $\hat{S}(\Omega)$ is the ring of all formal symbols defined in Ω ([2], Def. 1; here we consider $t=t_{1}$).

Definition 2. A double formal symbol

$$
P\left(t_{1}, t_{2} ; x, \xi\right)=\sum_{j, k=0}^{\infty} t_{1}^{j} t_{2}^{k} P_{j_{k}}(x, \xi)
$$

defined in Ω is said to be equivalent to zero and is written $P\left(t_{1}, t_{2} ; x, \xi\right)$ ~ 0 if for any $\Omega^{\prime} \subset \Omega$ there exist constants d, A which satisfy the following conditions:
(a) $0<d, 0<A<1$.
(b) For each $h>0$ there is a constant $C>0$ such that

$$
\begin{equation*}
\left|\sum_{j+k \leq m-1} P_{j k}(x, \xi)\right| \leq C A^{m} \exp (h|\xi|) \tag{2.3}
\end{equation*}
$$

for any $m=1,2, \cdots ;(x, \xi) \in \Omega^{\prime}$ satisfying $|\xi| \geq m d$.
The set of all double formal symbols defined in Ω which are equivalent to zero is denoted by $\hat{R}_{2}(\Omega)$. We set $\hat{R}(\Omega)=\hat{R}_{1}(\Omega)=\left.\hat{R}_{2}(\Omega)\right|_{t_{2}=0}$. We put furthermore $S(\Omega)=\left.\hat{S}(\Omega)\right|_{t=0}$ and $R(\Omega)=\hat{R}(\Omega) \cap S(\Omega)$. Here we always consider $t=t_{1}$. Then there are the following injections:

It is easy to see that $\hat{R}_{2}(\Omega)$ (resp. $\hat{R}(\Omega), R(\Omega)$) is an ideal of $\hat{S}_{2}(\Omega)$ (resp. $\hat{S}(\Omega), S(\Omega)$) and that $\hat{S}(\Omega) \cap \hat{R}_{2}(\Omega)=\hat{R}(\Omega)$. Hence there is an injective homomorphism

$$
\iota_{12}: \hat{S}(\Omega) / \hat{R}(\Omega) \longrightarrow \hat{S}_{2}(\Omega) / \hat{R}_{2}(\Omega)
$$

induced from the preceding inclusions. On the other hand we can define a homomorphism

$$
\rho_{21}: \hat{S}_{2}(\Omega) / \hat{R}_{2}(\Omega) \longrightarrow \hat{S}(\Omega) / \hat{R}(\Omega)
$$

by setting $\rho_{21}\left(P\left(t_{1}, t_{2} ; x, \xi\right)\right)=P(t, t ; x, \xi)$. Then we have $\rho_{21} \circ \iota_{12}=i d$, $\iota_{12} \circ \rho_{21}=i d$. By the theory of symbols of holomorphic microlocal operators (cf. [4]), $\xrightarrow{\lim } \hat{S}(\Omega) / \hat{R}(\Omega)\left(\Omega \ni \dot{x}^{*}\right.$; conic neighborhood) is additively isomorphic to the stalk $\mathcal{E}_{\dot{x}^{R}}^{R}$ of \mathcal{E}_{x}^{R} at \dot{x}^{*}. Therefore we have

Proposition 3. There is an additive isomorphism

$$
\underset{\longrightarrow}{\lim } \hat{S}_{2}(\Omega) / \hat{R}_{2}(\Omega) \longrightarrow \mathcal{E}_{x *}^{R}
$$

such that the image of $x_{j \xi_{j}}$ is equal to $x_{j} D_{j}(j=1, \cdots, n)$.
Definition 4. The image of a double formal symbol $P\left(t_{1}, t_{2} ; x, \xi\right)$ $=\sum_{j, k} t_{1}^{j} t_{2}^{k} P_{j_{k}}(x, \xi)$ under the preceding isomorphism is denoted by $: P\left(t_{1}, t_{2} ; x, \xi\right):=: \sum_{j, k} t_{1}^{j} t_{2}^{k} P_{j_{k}}(x, \xi):$ and is said to be the normal product of $P\left(t_{1}, t_{2} ; x, \xi\right)$. We often abbreviate $: \sum t_{1}^{j} t_{2}^{k} P_{j k}(x, \xi):$ to $: \sum P_{j k}(x, \xi):$.

Let $P(t ; x, \xi), Q(t ; x, \xi)$ be formal symbols $(\in \hat{S}(\Omega))$. Then the composite operator $: P(t ; x, \xi):: Q(t ; x, \xi):$ is expressed in terms of double symbols as follows.

Proposition 5. Set

$$
\begin{equation*}
W\left(t_{1}, t_{2} ; x, \xi\right)=\left.\exp \left(t_{2} \partial_{\xi} \cdot \partial_{y}\right) P\left(t_{1} ; x, \xi\right) Q\left(t_{1} ; y, \eta\right)\right|_{y=x} ^{y=x^{*}}, \tag{2.4}
\end{equation*}
$$

Then $W\left(t_{1}, t_{2} ; x, \xi\right)$ is a double formal symbol satisfying

$$
\begin{equation*}
: W\left(t_{1}, t_{2} ; x, \xi\right):=: P(t ; x, \xi):: Q(t ; x, \xi): . \tag{2.5}
\end{equation*}
$$

3. Statement of the results. A formal symbol $P(t ; x, \xi)$ $=\sum_{j=0}^{\infty} t^{j} P_{j}(x, \xi)$ defined in Ω is said to be of order at most m (m is a real number) if for any $\Omega^{\prime} \subset \Omega$ there are constants d, A satisfying the following conditions:
(a) $0<d, 0<A<1$.
(b) There is a constant $C>0$ such that

$$
\left|P_{j}(x, \xi)\right| \leq C A^{j}|\xi|^{m}
$$

for any $j=0,1,2, \cdots ;(x, \xi) \in \Omega^{\prime},|\xi| \geq(j+1) d$.
A formal symbol $p(t ; x, \xi)$ is said to be of order at most $1-0$ if it satisfies the condition of Proposition 2 in [2].

Now let $p(t ; x, \xi), q(t ; x, \xi)$ be formal symbols of order at most $1-0$ defined in Ω. Let $a(t ; x, \xi)$ and $b(t ; x, \xi)$ be formal symbols of order at most m_{1} and m_{2} respectively defined in Ω. We introduce two sequences $\left\{w_{j}\right\}$, $\left\{\psi_{j}\right\}$ of formal symbols defined in $\Omega \times \Omega$ as follows:

$$
\left\{\begin{array}{l}
w_{0}(t ; x, y, \xi, \eta)=p(t ; x, \xi)+q(t ; y, \eta), \tag{3.1}\\
\psi_{0}(t ; x, y, \xi, \eta)=a(t ; x, \xi) \cdot b(t ; y, \eta), \\
w_{j+1}=\frac{1}{j+1}\left(\partial_{\xi} \cdot \partial_{y} w_{j}+\sum_{\mu=0}^{j} \partial_{\xi} w_{\mu} \cdot \partial_{y} w_{j-\mu}\right), \\
\psi_{j+1}=\frac{1}{j+1}\left\{\partial_{\xi} \cdot \partial_{y} \psi_{j}+\sum_{\mu=0}^{j}\left(\partial_{\xi} \psi_{\mu} \cdot \partial_{y} w_{j-\mu}+\partial_{y} \psi_{\mu} \cdot \partial_{\xi} w_{j-\mu}\right)\right\} .
\end{array}\right.
$$

Here $j=0,1,2, \cdots$ Let us consider formal series

$$
\begin{aligned}
& r(t ; x, \xi)=\sum_{j=0}^{\infty} t^{j} w_{j}(t ; x, x, \xi, \xi), \\
& c(t ; x, \xi)=\sum_{j=0}^{\infty} t^{j} \psi_{j}(t ; x, x, \xi, \xi) .
\end{aligned}
$$

Then we have
Theorem 6. The formal series $r(t ; x, \xi)$ and $c(t ; x, \xi)$ are formal symbols of order at most $1-0$ and $m_{1}+m_{2}$ respectively defined in Ω satisfying

$$
\begin{align*}
& : a(t ; x, \xi) \cdot \exp \{p(t ; x, \xi)\}:: b(t ; x, \xi) \cdot \exp \{q(t ; x, \xi)\}: \tag{3.2}\\
& \quad=: c(t ; x, \xi) \cdot \exp \{r(t ; x, \xi)\}:
\end{align*}
$$

Remarks. (a) Of course such an expression as the right-hand side in (3.2) is not unique. We can, for example, replace c by $c e^{r^{\prime}}$ for any r^{\prime} to be of order at most 0 and r by $r-r^{\prime}$.
(b) The preceding theorem is valid even for non-local operators so long as the right member makes sense. For instance, a kind of composition formula for Fourier integral operators (cf. [5]), or rather for "Laplace integral operators" (cf. [6]) is obtained.

When $a=b=1$, we have the following as a corollary of Theorem 6 .
Theorem 7. The formal series $r(t ; x, \xi)$ is a formal symbol of order at most 1-0 defined in Ω such that

$$
\begin{equation*}
: \exp \{p(t ; x, \xi)\}:: \exp \{q(t ; x, \xi)\}:=: \exp \{r(t ; x, \xi)\}: . \tag{3.3}
\end{equation*}
$$

4. Outline of the proof of Theorem 6. The composite operator : $a e^{p}:: b e^{q}:$ is expressed by Proposition 5. That is, if we set $\Pi=\exp \left(t_{2} \partial_{\xi} \cdot \partial_{y}\right) a(t ; x, \xi) b(t ; y, \eta) \exp \{p(t ; x, \xi)+q(t ; y, \eta)\}$ then we have $: a e^{p}:: b e^{q}:=:\left.\Pi\right|_{y=x, \eta=\xi}:$. The double formal symbol Π (defined in $\Omega \times \Omega$) is the unique solution of

$$
\left\{\begin{array}{l}
\partial_{t_{2}} \Pi=\partial_{\varepsilon} \cdot \partial_{y} \Pi, \tag{4.1}\\
\left.\Pi\right|_{t_{2}=0}=a(t ; x, \xi) b(t ; y, \eta) \exp \{p(t ; x, \xi)+q(t ; y, \eta)\} .
\end{array}\right.
$$

We assume Π to be of the form

$$
\Pi=\sum_{j=0}^{\infty} t_{2}^{j} \psi_{j} \exp \left(\sum_{k=0}^{\infty} t_{2}^{k} w_{k}\right)
$$

If $\left\{\psi_{j}\right\}$ and $\left\{w_{k}\right\}$ satisfy (3.1), then Π is a solution to (4.1). Moreover one can see that $\sum t_{2}^{j} \psi_{j}$ and $\sum t_{2}^{k} w_{k}$ themselves are double formal symbols of order at most $m_{1}+m_{2}$ and $1-0$ respectively defined in $\Omega \times \Omega$. Since

$$
\begin{aligned}
& c(t ; x, \xi) \sim \sum t_{2}^{j} \psi_{j}(t ; x, x, \xi, \xi), \\
& r(t ; x, \xi) \sim \sum t_{2}^{t} w_{j}(t ; x, x, \xi, \xi),
\end{aligned}
$$

we obtain the theorem.

References

[1] T. Aoki: Invertibility for microdifferential operators of infinite order. Publ. RIMS, Kyoto Univ., 18, 421-449 (1982).
[2] -: The exponential calculus of microdifferential operators of infinite order. II. Proc. Japan Acad., 58A, 154-157 (1982).
[3] -: Calcul exponentiel des opérateurs microdifférentiels d'ordre infini, I (to appear).
[4] -: Symbol theory of microdifferential operators of infinite order. Kôkyûroku RIMS, Kyoto Univ., no. 468, pp. 1-65 (1982) (in Japanese).
[5] L. Hörmander: Fourier integral operators, I. Acta Math., 127, 79-183 (1971).
[6] K. Uchikoshi: Singular Cauchy problems for second order partial differential operators with non-involutory characteristics (to appear).

