22. Iteration Methods for Common Fixed Points of Nonexpansive Mappings

By Ken-ichi MIYAZAKI

Department of Mathematics, Kyushu Institute of Technology

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1983)

1. Introduction. In [1], DeMarr proved the existence theorem of common fixed points for commuting nonexpansive mappings: Let D be a nonempty compact convex subset of a Banach space. If T_i $(i \in J, J$ is an index set) are commuting nonexpansive mappings of D into itself, then $T_i, i \in J$, have a common fixed point in D. Now we are interested in the constructing process of a sequence which converges to a common fixed point. From this point of view, Ishikawa [3] and Kuhfittig [4] have shown the following theorems respectively.

Theorem A (Ishikawa [3]). Let D be a compact convex subset of a Banach space, and let $\{T_i: i=1, 2, \dots, k\}$ be a finite family of commuting nonexpansive self-mappings of D (i.e., $||T_ix - T_iy|| \le ||x-y||$ for all $x, y \in D$ and $T_iT_j = T_jT_i$ for all $i, j = 1, 2, \dots, k$).

Then $\bigcap_{i=1}^{k} F(T_i) \neq \phi$ and the sequence $\{x_{n_k}\}$ converges to a point in $\bigcap_{i=1}^{k} F(T_i)$ as $n_k \to \infty$, where x_{n_k} is defined by

 $\begin{bmatrix} \prod_{n_{k-1}=1}^{n_{k}} [S_{k} \prod_{n_{k-2}=1}^{n_{k-1}} [S_{k-1} \cdots [S_{3} \prod_{n_{i}=1}^{n_{2}} [S_{2} \prod_{n_{0}=1}^{n_{1}} S_{1}]] \cdots]]] x \\ with S_{i} = (1-\alpha_{i})I + \alpha_{i}T_{i}, \ 0 < \alpha_{i} < 1 \ (i=1,2,\cdots,k), \ and \ F(T_{i}) \ stands \ for \\ the \ set \ of \ fixed \ points \ of \ T_{i}.$

Theorem B (Kuhfittig [4]). Let D be a compact convex subset of a strictly convex Banach space, and let $T_i: i=1, 2, \dots, k$ be a finite family of nonexpansive self-mappings of D with a nonempty set of common fixed points. Define the mappings $U_i=(1-\alpha)I+\alpha T_iU_{i-1}$ for $0<\alpha<1, i=1, 2, \dots, k$ with $U_0=I$, the identity mapping. Then for any point $x \in D$, the sequence $\{U_k^n x\}$ converges to a point in $\bigcap_{i=1}^k F(T_i)$ as $n\to\infty$.

Comparing these two theorems, though in Theorem A the assumption of strict convexity of Banach space in B is removed, the condition of commuting mappings is stronger than that of existence of common fixed points ([1]), and further the iteration method in A is more complicated than that in B. The purpose of this paper is to present another simple iteration process for a common fixed point under slightly weaker assumptions than those in B.

We here note that in the case of a single mapping T_1 (i.e. k=1) Ishikawa showed the following iteration methods without any assumption on convexity. We shall later make use of this. K. MIYAZAKI

Theorem C (Ishikawa [2]). Let D be a closed subset of a Banach space X and let T be a nonexpansive mapping from D into a compact subset of X. Suppose that a point $x_1 \in D$ and a sequence $\{t_n\}_{n=1}^{\infty}$ satisfy the conditions: $\sum_{n=1}^{\infty} t_n = \infty$, $0 \leq t_n \leq b < 1$ and $x_n \in D$ for all positive integer n, where $\{x_n\}_{n=1}^{\infty}$ is defined by

(1) $x_{n+1} = (1-t_n)x_n + t_n T x_n.$

Then $F(T) \neq \phi$ and $\{x_n\}$ converges to a point in F(T) as $n \rightarrow \infty$.

2. Iteration methods of nonexpansive mappings. Now we shall show an iteration process for common fixed points of nonexpansive mappings. We first prove the following lemmas.

Lemma 1. Let D be a closed subset of a Banach space X and let $\{T_i: i=1, 2, ..., k\}$ be a finite family of nonexpansive mappings from D into a compact subset of X. Suppose that a point $x_1 \in D$ and a sequence $\{a_i\}_{i=0}^k$ satisfy the conditions: $0 < a_i < 1$ for i=0,1,...,k, $\sum_{i=0}^k a_i = 1$ and $x_n \in D$ for all positive integer n, where $\{x_n\}_{n=1}^{\infty}$ is defined by

(2) $x_{n+1} = a_0 x_n + \sum_{i=1}^k a_i T_i x_n.$

Then the sequence $\{x_n\}$ converges to a point y such that

(3) $\sum_{i=1}^{k} a_i T_i y = \sum_{i=1}^{k} a_i y.$

Proof. Putting $a'_i = a_i/(1-a_0)$, $i=1, 2, \dots, k$, (2) may be expressed as follows

 $x_{n+1} = a_0 x_n + (1 - a_0) \sum_{i=1}^k a'_i T_i x_n$

with $0 < a'_i < 1$, i=1, 2, ..., k and $\sum_{i=1}^k a'_i = 1$. Since the mappings T_i , i=1, 2, ..., k, are nonexpansive mappings from D into a compact subset of X and $x_n \in D$ for all positive integer $n, T := \sum_{i=1}^k a'_i T_i$ maps D into a compact subset of X. Therefore Theorem C may be applicable, thus we have $F(\sum_{i=1}^k a'_i T_i) \neq \phi$ and the sequence $\{x_n\}$ of (2) converges to a $y \in F(\sum_{i=1}^k a'_i T_i) \cap D$ which implies $\sum_{i=1}^k a_i T_i y = \sum_{i=1}^k a_i y$.

Lemma 2. Let X be a strictly convex Banach space and let y_i , i=1, 2, ..., k, be any elements of X. Suppose that $y=\sum_{i=1}^{k}a_iy_i$ with $0 < a_i < 1, i=1, 2, ..., k, \sum_{i=1}^{k}a_i=1$ and there is at least an element y_i such that $y_i \neq y$. Then we have

(4) $||y|| < \max\{||y_i||: for all y_i such that y_i \neq y\}.$

Proof. We shall prove the lemma by induction. When k=2 the assertion is true by the definition of strict convexity. Suppose that the assertion is true for any k-1 elements of X. Since

(5) $y = \sum_{i=1}^{k} a_i y_i = a_1 y_1 + (1 - a_1) \sum_{i=2}^{k} a'_i y_i$

with $a'_i = a_i/(1-a_1)$, $i=2, 3, \dots, k$, $\sum_{i=2}^k a'_i = 1$, if $y_1 = y$, then we have $y = \sum_{i=2}^k a'_i y_i$ with some $y_i \neq y$, $i=2, 3, \dots, k$, $\sum_{i=2}^k a'_i = 1$. Hence by the assumption of induction, (4) for y_i , $i=2, 3, \dots, k$, is true. If $y_1 \neq y$, then $\sum_{i=2}^k a'_i y_i \neq y$. Otherwise, $y_1 = y$ by (5). Therefore again by the assumption of induction we have

 $||y|| < \max(||y_1||, ||\sum_{i=2}^k a'_i y_i||)$

 $\leq \max(||y_1||, \max\{||y_i||: \text{ for all } y_i \neq y, i=2, 3, \dots, k\}).$

This completes the proof.

Making use of these lemmas we shall show the following main theorem.

Theorem 1. Let D be a closed subset of a strictly convex Banach space X and $\{T_i: i=1, 2, \dots, k\}$ be a finite family of nonexpansive mappings from D into a compact subset of X such that $\bigcap_{i=1}^{k} F(T_i) \neq \phi$. Suppose that a point $x_1 \in D$ and a sequence $\{a_i\}_{i=0}^{k}$ satisfy the conditions in Lemma 1. Then the sequence $\{x_n\}$ defined by (2) converges to an element $y \in \bigcap_{i=1}^{k} F(T_i)$.

Proof. We have proved in Lemma 1 that the sequence $\{x_n\}$ converges to an element $y \in \bigcap_{i=1}^k F(T_i)$ satisfying (3). Putting $a'_i = a_i/(1-a_0)$ for $i=1, 2, \dots, k$, this implies

(6) $y = \sum_{i=1}^{k} a'_i T_i y$ with $0 < a'_i < 1, \sum_{i=1}^{k} a'_i = 1.$

On the other hand, from the assumptions of $\bigcap_{i=1}^{k} F(T_i) \neq \phi$ and non-expansiveness of T_i , there exists an element $w: T_i w = w$ for $i=1,2, \dots, k$, and we have

(7) $||T_iy-w|| \leq ||y-w||$ for $i=1, 2, \dots, k$.

Now we wish to show $y \in \bigcap_{i=1}^{k} F(T_i)$. Suppose not, then there exists at least a $T_i y$ such that $T_i y \neq y$. Since X is strictly convex, Lemma 2 is applicable to $T_i y - w$, $i=1, 2, \dots, k$ and y-w instead of y_i , $i=1, 2, \dots, k$ and y respectively. Thus from (6) and (7) we have

 $\begin{aligned} \|y - w\| &= \|\sum_{i=1}^{k} a'_i(T_i y - w)\| \\ &< \max\{\|T_i y - w\| : T_i y \neq y\} \leq \|y - w\|. \end{aligned}$

This contradiction shows $T_i y = y$ for all $i=1, 2, \dots, k$, which completes the proof.

Generalizing Mann's iteration method $M(x_1, t_n, T)$ ([2], [5]) for a single mapping T to the case of a family of nonexpansive mappings, we may extend Theorem 1 to the following.

Theorem 2. Let D be a closed subset of a strictly convex Banach space X and let $\{T_i: i=1, 2, \dots, k\}$ be a finite family of nonexpansive mappings from D into a compact subset of X such that $\bigcap_{i=1}^{k} F(T_i) \neq \phi$. Suppose that a point $x_1 \in D$ and a sequence $\{t_n\}$ satisfy the conditions: $0 \leq t_n \leq b < 1$ for any positive integer $n, \sum_{n=1}^{\infty} t_n = \infty$ and further $x_n \in D$ for all n. Here x_n is defined by

(8)
$$x_{n+1} = (1-t_n)x_n + \frac{t_n}{k} \sum_{i=1}^k T_i x_n$$
 for $n = 1, 2, \cdots$.

Then the sequence $\{x_n\}$ converges to a common fixed point of T_i , $i=1,2,\dots,k$.

The proof is based on the following lemma instead of Lemma 1. Lemma 1'. Let D and $\{T_i: i=1, 2, \dots, k\}$ be the same as in Lemma

No. 3]

K. MIYAZAKI

1. For any sequence $\{t_n\}_{n=1}^{\infty}$ such that $0 \leq t_n \leq b < 1$, $\sum_{n=1}^{\infty} t_n = \infty$, we define the sequence $\{x_n\}_{n=1}^{\infty}$ by (8). If $x_n \in D$ for all positive integer n, then $\{x_n\}$ converges to a point $y \in D$ that satisfies

$$(9) y=\frac{1}{k}\sum_{i=1}^{k}T_{i}y.$$

As in the proof of Lemma 1, putting $T := (1/k) \sum_{i=1}^{k} T_i$, then T is nonexpansive. Therefore we can apply Theorem C to this T, which shows $F((1/k) \sum_{i=1}^{k} T_i) \neq \phi$ and $\{x_n\}$ converges to a $y \in F((1/k) \sum_{i=1}^{k} T_i)$. This implies (9).

Proof of Theorem 2. By making use of Lemmas 1' and 2 in the place of Lemmas 1 and 2 in the proof of Theorem 1, we can prove the theorem in the same way of Theorem 1. Therefore we omit it.

References

- R. DeMarr: Common fixed points for commuting contraction mappings. Pacific J. Math., 13, 1139-1141 (1963).
- [2] S. Ishikawa: Fixed points and iteration of a nonexpansive mapping in a Banach space. Proc. Amer. Math. Soc., 59, 65-71 (1976).
- [3] ——: Common fixed points and iteration of commuting nonexpansive mappings. Pacific J. Math., 80, 493-501 (1979).
- [4] P. Kuhfittig: Common fixed points of nonexpansive mappings by iteration. ibid., 97, 137-139 (1981).
- [5] W. R. Mann: Mean value methods in iteration. Proc. Amer. Math. Soc., 4, 506-510 (1953).