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43. Pluricanonical Mappings of Canonically
Polarized Varieties

By Kazuhisa MAEHARA
Tokyo Institute of Polytechnics

(Communicated by Kunihiko KODAIRA, M. J. A., April 12, 1983)

In this note, we shall prove the following result.

Theorem. Let V be a canonically polarized variety of dimension
n over C. Then there exists an integer N which depends only on n
such that the m-th canonical mappings @, of V are birational for all
m=N.

Here, V is said to be canonically polarized, if it is non-singular,
complete and if the canonical divisor K(V) is ample.

To prove this, we need the following lemmas.

Lemma 1 (Matsusaka). Let V be a canonically polarized variety
of dimension n and let v be K(V)™, If P, (V)=rm"'4n, then the m-th
canonical mapping @, is generically finite.

Lemma 2 (Wilson). LetV be a non-stngular variety of dimension
n. If there exists m such that the m-th canonical mapping @, is
generically finite and P, (V)=n+2 then @, ., is birational.

Lemma 3. LetV be a complete non-singular variety of dimension
n over a field of characteristic zero. Assume that the m,~th canonical
mapping s birational. Then the m-th canonical mapping is birational
for all m=Max {1, nm,(m,—1)}.

Proof. PutW,=90,(V). Clearly, Rat (W,,,)=Rat (W, )=Rat (V)
for all integers k>1. By Wilson’s Lemma Rat(W,,,.,)=Rat (V).
It suffices to show that we can find integers «, 8=0 such that m
=a(mm,+1)+pm,. In fact, we can find integers ¢=1, nm,(m,—1)>r
>0 such that m=qnm,(m,—1)+r. Also, r=sm,+a for s=0, m,>a«a
=0. Hence m—a(nm,+1)=pm,, where f=n(g(m,—1)—a)+s. Note
that §=0.

Proof of Theorem. Since K(V) is ample, it follows that P,(V)
=XV, OmK))=27_, (—1)* dim H'(V, O(mK)) for m=2. Note that the
leading coefficient of polynomial x(V, ©@(mK)) is equal to 7/n! More-
over if P,(V)>rk"'+n—1 (Matsusaka inequality) for one of value k
such that 2<k<n+2, then we can find such a number N that all the
m-~th canonical mappings are birational for all m>=N, by virtue of
Lemmas 1, 2 and 3.

Casel. Assumer<n—1. If P,(V)>(nm—1)(m"'+1) for one value
m such that 2<m<n-+2, then Matsusaka inequality holds. Hence
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we assume that P,(V)<(n—1)(m *'+1) for all 2<m<n+2. Then
there are at most a finite number of such polynomials in the form
P, (V). Thus we can find a number ! dependent on dim V only such
that Matsusaka inequality holds for all m>1.

Case 2. v>n—1. We denote m-genera P,(V) by P(m) and assume
Pim)<r(m™*+1) for all me[2, n+2]. If not, Matsusaka inequality
holds for one value m such that 2<m=<n-+2. Thus we shall show
that there exists a number I dependent only on » such that P(m)>rm"-*
+n—1 for all m=1, under the assumption. We construct Lagrangean
interpolation function g of degree n with the same leading coefficient as
P(m) such that the polynomial equation P(m)— g(m)=0 has n—2 roots
<n, and a root>n and that P(m)>g(m) for all m=n+2. Moreover
h(m):=g(m)/7 is a polynomial in m whose coefficients depend only on
n. Thus, gim)—r(m"-'4+1)=0 is equivalent to A(m)—(m"-'41)=0.
Then we shall show that there exists a number I dependent only on
n such that Matsusaka inequality holds for all m>1. We put g
=7(""'41) when i=n+2 mod 2 and i#n+2 for all ¢ such that 2<4
<n+2. Further, we put g(¢)=0 if i=n+1 mod 2, and gn+2)=ar
for 2<i<n+2. Here, « is determined by the following equation

9@/ (E—2)E—3)- - -(GND- - -(G—n—2)+at /n!=T/nl.
Note that « is a funection of n. We claim that P(m)>g(m) for all m
=n+2. Put Q(m)=g(m)—P(m). Consider each interval ({—1,¢+1)
for i=n-+1mod 2, contained in [2, n4+1]. Then Q¢—1)>0, QEt+1)>0
and Q(i)=—P()<0 by definition. Hence Q(m)=0 has at least two
roots or a double root in the open interval (:—1,4+1). Moreover, it
has at least one root in ({—1, 7] and also another in [¢, 7-+1).

Now, divide into two cases.

(a) 3=n+1mod2. We have (n—2)/2 intervals in the form
(t—1, i+1) ; more precisely they are (2, 4), (4, 6), - --, (n—2, n). Hence
Q(m)=0 has 2(n—2)/2+1 (=n—1) roots in (2, n+1].

(b) 2=n+1mod2. We have (n—3)/2 intervals in the form
(t—1,%+1); these are (38,5), (5,7), ---, m—2,n). Thus Q(m)=0 has
at least 14+2(n—3)/24+1 (=n—1) roots in [2, n+1].

In each case, note that @ has degree n—1. Let m,, ---, m,_, be
all roots of Q(m)=0. Hence Q(m)=a(m—m,)- . -(m—m,_,). Clearly
My, + oy My, <n and m,_,>n. From Qn)>0, a<0. Thus Q(m)<0
for all m>n+1, i.e. P(m)>g(m). Hence P(m) > g(m)=7(m**+1)
>1m"'+n—1 for all integers m>Max {maximal real root of A(m)
—(m*'4+1)=0,n+2}. Thus, our proof is complete.

Remark. It is rather easy to verify that 10n!°+? gatisfies the
condition of our Theorem.
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