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Connections with Irregular Singular Points
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(Communicated by Kunihiko KODAIRA, M. J. A., May 12, 1983)

Let M be a complex manifold and let H be a divisor on M. Denote
by 9(*H) the sheaf over M of germs of meromorphic p-forms which
are holomorphic in M-H and have poles on H for p=0, ..., n. In
case t0=0, we use frequently (*H) instead of 9(*H).

We suppose throughout this paper that the divisor H has at most
normal crossings.

Let 3 be a locally free sheaf of )(*H)-modules of rank m and let
17 be an integrable connection on . For any point p e H, there exists
an open set U in M containing p and a free basis e=(ev, ..., ev) of
q over U. With respect to the free basis e, the connection /7 is
represented by (d+2), i.e.

/7((e1, ..., e}u)= (el, ..., e}(du+ 12euu),
where 9 is an m-by-m matrix of meromorphic 1-forms with poles at
most on H and u is any m-vector of functions in ((*H)(U). If f
-(f,...,fv} is another free basis of over U, then there exists
an m-by-m invertible matrix G of functions in ((*H)(U) such that

(f, ..., fu (e, ..., e}G,
g((fv, ..., fv}u) (fv, ..., fv}(du+ (G-{[2evG+ dV})u).

Let x, ..., x be holomorphic local coordinates at p on U with U ( H
={x... Xn-=0}, then 9 is written of the form

9 i=1" x-’xIAi(x)dx+=,,+ x-’A(x)dx,
where p=(p,, ..., Pn", O, ", O)e N and A(x) is an m-by-m matrix
of holomorphic functions in U for i- 1, ., n, and 9 satisfies, by the
integra.bility condition, dtOv+9vAgv=0.

Suppose that for any point p on H
(H) there exists an open set U containing p with holomorphic

coordinates x,..., x and a free basis (e,..., e} of such that

2 is written of the above form satisfying
(HI) p--0 or, pO and A(O) has m distinct eigenvalues for

all i-- 1, ., n".
Let M- be the real blow-up along H of M with the natural projec-

tion pr’M-oM. Denote by - the sheaf over M- of germs of
functions strongly asymptotically developable and write -(*H) for
-(R).opr*((*H). Denote by GL(m,-) and GL(m,.-(*H)) the
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sheaf of germs of m-by-m matricial invertible functions of which
entries belong to - and -(*H), respectively, and denote by
GL(m, -) the sheaf of germs of m-by-m invertible matricial func-
tions strongly asymptotically developable to the m-by-m unit matrix I.
Evidently, GL(m, -) is a subsheaf GL(m, -(*H)) we denote by
the natural inclusion. For the above notation, we refer to the preced-
ing article [10].

Then, we can assert
Theorem 1. If the assumption (H) is satisfied for any point p

on H, then there exists a locally free sheaf of -(*H)-modules over
M- and a connection P’ on such that

( ) there exists an isomorphism g’-pr*(R),(,)-(*H) such
that g-

(ii) for any point p on H, there exists an open set U containing
p such that the isomorphism class [lv-] of restricted on U- belongs
to ],H(U-, GL(m,-)), where U-=pr-(U) and ], is the natural
inclusion induced by ],

(iii) for any point p on H and for an open set U containing p
with holomorphic coordinates x,...,x, UH={x...x,.=O}, there
exist an m-by-m diagonal matrix D of functions in ((*H)(U) and upper
triangular matrices T, i--1, ..., n" such that

(ill.a) D, T (i=1, ..., n") are commutative each other,
(iii.b) for any point p’ in pr-(p) there exists an open set V- con-

taining p’ and a free basis (e(V-), ..., e(V-)} such that

’((e(V-), ..., e(V-)}v)
--((e(V-), ..., e(V-)})(dv+{dD(x)+," Txdx}v),

where v is any m-vector of functions in - (*H)(V-).
Conversely,
Theorem 2. For any locally free sheaf of -.(*H)-modules over

M- and an integrable connection P’ on satisfying (ii) and (iii), there
exists a locally free sheaf of ((*H)-modules over M and an integrable
connection ’ on satisfying (i).

In order to, prove Theorem 2, we use the following lemma.
Lemma 1. For a loyally free sheaf of -(*H)-modules over

M- and an integrable connection 17 on satisfying (ii), there exists
a locally free sheaf of ((*H)-modules over M and an integrable con-
nection satisfying (i).

Remark 1. For a polydisk U, ].H(U-, GL(m, /-)) is the unit
element in H(U-, GL(m, -(*H))) (see Majima [9] or [10]). This is
the key to the proof of Lemma 1.

For the above, and/7, the kernel sheaf Ker/7, is a locally con-
stant sheaf 5’ on M- which is thought to be a locally constant sheaf on
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M-H. For any p e H and for any p’ e pr-(p), take an open set V-(p’)
as in (iii.b), then {V-(p’)’p’ e pr-(p), p e H} is an open covering of a
neighborhood of pr-(H). Then, by (iii),

c(V-(p’))= (e(V-(p’)), ..., e(V-(p’))} ESS (x(p))
is a free basis for C over V-(p’), where x(p) is the holomorphic local
coordinate system chosen at p--pr(p’) and ESS (x(p)) is a fundamental
matrix of solutions of the system of equations

du+{dD(x(p))+ ’’= T(p)x;(p)dx(p)}u=O,
say, ESS (x(p)) exp (D(x(p))) n"]-[ X(p)r( For p’, q’ e pr-(H), de-
note by C,_(v,)_(,) the transition matrix for C relative to the bases
c(V-(p’)), c(V-(q’)), i.e.

c(V- (p’))Cv_(,)_(, c(V- (q’)).
And so, the matrix function

Gv_(,)v_(,)=ESS (x(p))Cv-(,)v_(,) ESS (x(q))-is the transition function for relative to e(V-(p’)), e(V-(q’)). There-
fore Gv_(,)v_(,) is strongly asymptotically developable in pr(V-(p’)

V-(q’))-H. In particular, if pr(p’)=pr(q’), Gv-(,)-(,) is strongly
asymptotically developable to I. Conversely, given a locally constant
sheaf over M-H and the matricial function ESS (x(p)) for any p e H
satisfying the above properties, there exists a locally free sheaf oer
M- of /-(*H)-modules and an integrable connection P’ on such that
(iii.b) is satisfied and .such that the kernel .sheaf Ker tT coincides with
the given locally constant sheaf . And so, by Theorem 2, there exists
a locally free sheaf over M of _)(*H)-modules and an integrable con-
nection 7 on satisfying (i) for this (, ) constructed from C and
ESS (x(p)) for any p e H.

Moreover, if =’(R)_-(*H) with a locally free sheaf ’ of
--modules and if M is a Stein manifold or a projective manifold, by
using Oka-Cartan’s Theorem or Kodaira’s vanishing theorem, we can
prove the following (cf. [14], [5], [13]).

Theorem :. There exists a divisor H’ on M and an integrable
connection P’ on the sheaf ((*(H+H’)), i.e. a completely integrable
system of Pfaffian equations on M with irregular singular points on
(H+H’), such that (i) is satisfied.

This theorem is classically formulated and proven by G. D.
Birkhoff [2], [3] and reformulated locally by Balser-Jurkat-Lutz [1],
Sibuya [16], [17] and Malgrange [12] in one variable case. On Rieman-
Hilbert problem in several variables case, we refer to Deligne [4] (cf.
Katz [8]), Grard [5] and Suzuki [13].

The detail will be published elsewhere (see Majima [11]).
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Correction (Proc. Japan Acad., 59A, 4 (1983)).
p. 147, line 16" For __,,+ read ’:.
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