57. Riemann-Hilbert-Birkhoff Problem for Integrable Connections with Irregular Singular Points

By Hideyuki Majima
Department of Mathematics, Faculty of Sciences, University of Tokyo (Communicated by Kunihiko Kodaira, m. J. A., May 12, 1983)

Let M be a complex manifold and let H be a divisor on M. Denote by $\Omega^{p}\left({ }^{*} H\right)$ the sheaf over M of germs of meromorphic p-forms which are holomorphic in $M-H$ and have poles on H for $p=0, \cdots, n$. In case $p=0$, we use frequently $\mathcal{O}\left({ }^{*} H\right)$ instead of $\Omega^{0}\left({ }^{*} H\right)$.

We suppose throughout this paper that the divisor H has at most normal crossings.

Let \mathcal{S} be a locally free sheaf of $\mathcal{O}\left({ }^{*} H\right)$-modules of rank m and let ∇ be an integrable connection on \mathcal{S}. For any point $p \in H$, there exists an open set U in M containing p and a free basis $e_{U}=\left(e_{1 U}, \cdots, e_{m U}\right)$ of \mathcal{S} over U. With respect to the free basis e_{U}, the connection ∇ is represented by ($d+\Omega_{e U}$), i.e.

$$
\nabla\left(\left\langle e_{1 U}, \cdots, e_{m U}\right\rangle u\right)=\left\langle e_{1 U}, \cdots, e_{m U}\right\rangle\left(d u+\Omega_{e U} u\right),
$$

where $\Omega_{e U}$ is an m-by- m matrix of meromorphic 1-forms with poles at most on H and u is any m-vector of functions in $\mathcal{O}(* H)(U)$. If f_{U} $=\left\langle f_{1 U}, \cdots, f_{m U}\right\rangle$ is another free basis of \mathcal{S} over U, then there exists an m-by- m invertible matrix G of functions in $\mathcal{O}\left({ }^{*} H\right)(U)$ such that

$$
\begin{aligned}
& \left\langle f_{1 U}, \cdots, f_{m U}\right\rangle=\left\langle e_{1 U}, \cdots, e_{m U}\right\rangle G \\
& \nabla\left(\left\langle f_{1 U}, \cdots, f_{m U}\right\rangle u\right)=\left\langle f_{1 U}, \cdots, f_{m U}\right\rangle\left(d u+\left(G^{-1}\left\{\Omega_{e U} G+d G\right\}\right) u\right) .
\end{aligned}
$$

Let x_{1}, \cdots, x_{m} be holomorphic local coordinates at p on U with $U \cap H$ $=\left\{x_{1} \cdots x_{n^{\prime \prime}}=0\right\}$, then $\Omega_{e v}$ is written of the form

$$
\Omega_{e U}=\sum_{i=1}^{n^{\prime \prime}} x^{-p_{i}} x_{i}^{-1} A_{i}(x) d x_{i}+\sum_{i=n^{\prime \prime+1}}^{n} x^{-p_{i}} A_{i}(x) d x_{i},
$$

where $p_{i}=\left(p_{i 1}, \cdots, p_{i n^{\prime \prime}}, 0, \cdots, 0\right) \in N^{n}$ and $A_{i}(x)$ is an m-by- m matrix of holomorphic functions in U for $i=1, \cdots, n$, and $\Omega_{e U}$ satisfies, by the integrability condition, $d \Omega_{e U}+\Omega_{e U} \wedge \Omega_{e U}=0$.

Suppose that for any point p on H
$(\mathrm{H} \#)$ there exists an open set U containing p with holomorphic coordinates x_{1}, \cdots, x_{n} and a free basis $\left\langle e_{1 U}, \cdots, e_{m U}\right\rangle$ of \mathcal{S} such that $\Omega_{e U}$ is written of the above form satisfying
$(\mathrm{H} \# 1) \quad p_{i}=0$ or, $p_{i}>0$ and $A_{i}(0)$ has m distinct eigenvalues for all $i=1, \cdots, n^{\prime \prime}$.

Let M^{-}be the real blow-up along H of M with the natural projection $p r: M^{-} \rightarrow M$. Denote by \mathcal{A}^{-}the sheaf over M^{-}of germs of functions strongly asymptotically developable and write $\mathcal{A}^{-}(* H)$ for $\mathcal{A}^{-} \otimes_{p r^{*} 0} p r^{*} \mathcal{O}\left({ }^{*} H\right)$. Denote by $G L\left(m, \mathcal{A}^{-}\right)$and $G L\left(m, \mathcal{A}^{-}\left({ }^{*} H\right)\right)$ the
sheaf of germs of m-by- m matricial invertible functions of which entries belong to \mathcal{A}^{-}and $\mathcal{A}^{-}\left({ }^{*} H\right)$, respectively, and denote by $G L\left(m, \mathcal{A}^{-}\right)_{I_{m}}$ the sheaf of germs of m-by- m invertible matricial functions strongly asymptotically developable to the m-by- m unit matrix I_{m}. Evidently, $G L\left(m, \mathcal{A}^{-}\right)_{I_{m}}$ is a subsheaf $G L\left(m, \mathcal{A}^{-}(* H)\right)$: we denote by j the natural inclusion. For the above notation, we refer to the preceding article [10].

Then, we can assert
Theorem 1. If the assumption ($\mathrm{H} \#$) is satisfied for any point p on H, then there exists a locally free sheaf \mathcal{F} of $\mathcal{A}^{-}\left({ }^{*} H\right)$-modules over M^{-}and a connection $\nabla_{\mathscr{F}}$ on \mathscr{F} such that
(i) there exists an isomorphism $g: \mathscr{F} \rightarrow p r^{*} \mathcal{S} \otimes_{p r * *(* H)} \mathcal{A}^{-(* H)}$ such that $g^{-1} \cdot(\nabla \otimes i d) \cdot g=\nabla_{q}$,
(ii) for any point p on H, there exists an open set U containing p such that the isomorphism class [FF| $\left.\right|_{U^{-}}$] of \mathscr{F} restricted on U^{-}belongs to $j_{*} H^{1}\left(U^{-}, G L\left(m, \mathcal{A}^{-}\right)_{I_{m}}\right)$, where $U^{-}=p r^{-1}(U)$ and j_{*} is the natural inclusion induced by j,
(iii) for any point p on H and for an open set U containing p with holomorphic coordinates $x_{1}, \cdots, x_{n}, U \cap H=\left\{x_{1} \cdots x_{n^{\prime \prime}}=0\right\}$, there exist an m-by-m diagonal matrix D of functions in $\mathcal{O}(* H)(U)$ and upper triangular matrices $T_{i}, i=1, \cdots, n^{\prime \prime}$ such that
(iii.a) $D, T_{i}\left(i=1, \cdots, n^{\prime \prime}\right)$ are commutative each other,
(iii.b) for any point p^{\prime} in $p r^{-1}(p)$ there exists an open set V^{-}containing p^{\prime} and a free basis $\left\langle e\left(V^{-}\right)_{1}, \cdots, e\left(V^{-}\right)_{m}\right\rangle$ such that

$$
\begin{aligned}
& \nabla_{q}\left(\left\langle e\left(V^{-}\right)_{1}, \cdots, e\left(V^{-}\right)_{m}\right\rangle v\right) \\
& \quad=\left(\left\langle e\left(V^{-}\right)_{1}, \cdots, e\left(V^{-}\right)_{m}\right\rangle\right)\left(d v+\left\{d D(x)+\sum_{i=1}^{n^{\prime \prime}} T_{i} x_{i}^{-1} d x_{i}\right\} v\right),
\end{aligned}
$$

where v is any m-vector of functions in $\mathcal{A}^{-}\left({ }^{*} H\right)\left(V^{-}\right)$.
Conversely,
Theorem 2. For any locally free sheaf \mathscr{F} of $\mathcal{A}^{-(* H)-m o d u l e s ~ o v e r ~}$ M^{-}and an integrable connection ∇_{g} on \mathcal{F} satisfying (ii) and (iii), there exists a locally free sheaf \mathcal{S} of $\mathcal{O}\left({ }^{*} H\right)$-modules over M and an integrable connection ∇ on \mathcal{S} satisfying (i).

In order to prove Theorem 2, we use the following lemma.
Lemma 1. For a locally free sheaf \mathcal{F} of $\mathcal{A}^{-(* H)-m o d u l e s ~ o v e r ~}$ M^{-}and an integrable connection ∇_{Φ} on \mathcal{F} satisfying (ii), there exists a locally free sheaf \mathcal{S} of $\mathcal{O}\left({ }^{*} H\right)$-modules over M and an integrable connection ∇ satisfying (i).

Remark 1. For a polydisk $U, j_{*} H^{1}\left(U^{-}, G L\left(m, \mathcal{A}^{-}\right)_{I_{m}}\right)$ is the unit element in $H^{1}\left(U^{-}, G L\left(m, \mathcal{A}^{-}(* H)\right)\right.$) (see Majima [9] or [10]). This is the key to the proof of Lemma 1.

For the above \mathscr{F} and $\nabla_{\mathscr{F}}$, the kernel sheaf $\operatorname{Ker} \nabla_{\mathscr{F}}$ is a locally constant sheaf \mathcal{C} on M^{-}which is thought to be a locally constant sheaf on
$M-H$. For any $p \in H$ and for any $p^{\prime} \in p r^{-1}(p)$, take an open set $V^{-}\left(p^{\prime}\right)$ as in (iii.b), then $\left\{V^{-}\left(p^{\prime}\right): p^{\prime} \in p r^{-1}(p), p \in H\right\}$ is an open covering of a neighborhood of $p r^{-1}(H)$. Then, by (iii),

$$
c\left(V^{-}\left(p^{\prime}\right)\right)=\left\langle e\left(V^{-}\left(p^{\prime}\right)\right)_{1}, \cdots, e\left(V^{-}\left(p^{\prime}\right)\right)_{m}\right\rangle \operatorname{ESS}(x(p))
$$

is a free basis for \mathcal{C} over $V^{-}\left(p^{\prime}\right)$, where $x(p)$ is the holomorphic local coordinate system chosen at $p=p r\left(p^{\prime}\right)$ and $\operatorname{ESS}(x(p))$ is a fundamental matrix of solutions of the system of equations

$$
d u+\left\{d D(x(p))+\sum_{i=1}^{n^{\prime \prime}} T_{i}(p) x_{i}^{-1}(p) d x_{i}(p)\right\} u=0
$$

say, $\operatorname{ESS}(x(p))=\exp (D(x(p))) \prod_{i=1}^{n^{\prime \prime}} x_{i}(p)^{T_{i}(p)}$. For $p^{\prime}, q^{\prime} \in p r^{-1}(H)$, denote by $C_{V-\left(p^{\prime}\right) V-\left(q^{\prime}\right)}$ the transition matrix for \mathcal{C} relative to the bases $c\left(V^{-}\left(p^{\prime}\right)\right), c\left(V^{-}\left(q^{\prime}\right)\right)$, i.e.

$$
c\left(V^{-}\left(p^{\prime}\right)\right) C_{V^{-\left(p^{\prime}\right) V-\left(q^{\prime}\right)}}=c\left(V^{-}\left(q^{\prime}\right)\right)
$$

And so, the matrix function

$$
G_{V-\left(p^{\prime}\right) V-\left(q^{\prime}\right)}=\operatorname{ESS}(x(p)) C_{V-\left(p^{\prime}\right) V-\left(q^{\prime}\right)} \operatorname{ESS}(x(q))^{-1}
$$

 fore $G_{V-\left(p^{\prime}\right) V-\left(q^{\prime}\right)}$ is strongly asymptotically developable in $\operatorname{pr}\left(V^{-}\left(p^{\prime}\right)\right.$ $\left.\cap V^{-}\left(q^{\prime}\right)\right)-H$. In particular, if $\operatorname{pr}\left(p^{\prime}\right)=p r\left(q^{\prime}\right), G_{V-\left(p^{\prime}\right) V-\left(q^{\prime}\right)}$ is strongly asymptotically developable to I_{m}. Conversely, given a locally constant sheaf \mathcal{C} over $M-H$ and the matricial function $\operatorname{ESS}(x(p))$ for any $p \in H$ satisfying the above properties, there exists a locally free sheaf \mathcal{F} over M^{-}of $\mathcal{A}^{-}\left({ }^{*} H\right)$-modules and an integrable connection ∇_{Φ} on \mathcal{F} such that (iii.b) is satisfied and such that the kernel sheaf $\operatorname{Ker} \nabla_{\Phi}$ coincides with the given locally constant sheaf \mathcal{C}. And so, by Theorem 2, there exists a locally free sheaf \mathcal{S} over M of $\mathcal{O}\left({ }^{*} H\right)$-modules and an integrable connection ∇ on \mathcal{S} satisfying (i) for this (\mathcal{F}, ∇_{q}) constructed from \mathcal{C} and $\operatorname{ESS}(x(p))$ for any $p \in H$.

Moreover, if $\mathscr{F}=\mathscr{F}^{\prime} \otimes_{\mathfrak{A}} \mathcal{A}^{-}\left({ }^{*} H\right)$ with a locally free sheaf \mathscr{F}^{\prime} of \mathcal{A}^{-}-modules and if M is a Stein manifold or a projective manifold, by using Oka-Cartan's Theorem or Kodaira's vanishing theorem, we can prove the following (cf. [14], [5], [13]).

Theorem 3. There exists a divisor H^{\prime} on M and an integrable connection ∇ on the sheaf $\mathcal{O}\left({ }^{*}\left(H+H^{\prime}\right)\right)^{m}$, i.e. a completely integrable system of Pfaffian equations on M with irregular singular points on ($H+H^{\prime}$), such that (i) is satisfied.

This theorem is classically formulated and proven by G. D. Birkhoff [2], [3] and reformulated locally by Balser-Jurkat-Lutz [1], Sibuya [16], [17] and Malgrange [12] in one variable case. On RiemanHilbert problem in several variables case, we refer to Deligne [4] (cf. Katz [8]), Gérard [5] and Suzuki [13].

The detail will be published elsewhere (see Majima [11]).

Correction (Proc. Japan Acad., 59A, 4 (1983)).
p. 147, line 16: For $\cap_{j=n^{\prime \prime}+1}^{j}$ read $\bigcap_{j=1}^{n_{j}^{\prime \prime}}$.

References

[1] Balser, W., Jurkat, B., and Lutz, D. A.: Birkhoff invariants and Stokes multipliers for meromorphic linear differential equations. J. Math. Anal. Appl., 71, 48-94 (1979).
[2] Birkhoff, G. D.: Singular points of ordinary linear differential equations. Trans. Amer. Math. Soc., 10, 436-470 (1909).
[3] --: The generalized Riemann problem for linear differential equations and the allied problems for linear difference equations. Proc. Amer. Acad. Arts and Sci., 49, 521-568 (1913).
[4] Deligne, P.: Equations différentielles à points singuliers réguliers. Lect. Notes in Math., vol. 163, Springer-Verlag (1970) et Correction au Lect. Note 163, Warwick University, April 1971.
[5] Gérard, R.: Le problème de Riemann-Hilbert sur une variété analytique complex. Ann. Inst. Fourier, 19, 1-12 (1969).
[6] Gérard, R., and Sibuya, Y.: Etude certains systèmes de Pfaff avec singularités. Lect. Notes in Math., vol. 712, Springer-Verlag, pp. 131-288 (1979).
[7] Hukuhara, M.: Sur les points singuliers des équations différentielles linéaires, II. Jour. Fac. Sci. Hokkaido Univ., 5, 123-166 (1937).
[8] Katz, N.: An overview of Deligne's Work on Hilbert's Twenty-first problem. Proc. of Symp. in Pure Math. vol. 28, pp. 537-557 (1976).
[9] Majima, H.: Analogues of Cartan's decomposition theorems in asymptotic analysis (1982) (preprint) (to appear in Funk. Ekva.).
[10] -: Vanishing theorems in asymptotic analysis. Proc. Japan Acad., 59A, 146-149 (1983).
[11] - : Riemann-Hilbert-Birkhoff problem for integrable connections (1983) (preprint).
[12] Malgrange, B.: Remarques sur les équations différentielles à points singuliers irréguliers. Lect. Notes in Math., vol. 712, Springer-Verlag, pp. 7786 (1979).
[13] Suzuki, O.: The problem of Riemann and Hilbert and the relations of Fuchs in several complex variables. ibid., vol. 712, Springer-Verlag, pp. 325-364 (1979).
[14] Röhrl, H.: Das Riemann-Hilbertsche Problem der Theorie der linearen Differentialgleichungen. Math. Ann., 133, 1-25 (1957).
[15] Sibuya, Y.: Simplification of a system of linear ordinary differential equations about a singular point. Funk. Ekva., 4, 29-56 (1962).
[16] --: Linear ordinary differential equations in the complex domain, connection problems. Kinokuniya-shoten (1976) (in Japanese).
[17] -_: Stokes phenomena. Bull. Amer. Math. Soc., 83, 1075-1077 (1977).

