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51. On a Multi-Dimensional [a, B, rl.Langevin Equation

By Yuji NAKANO*) and Yasunori OKABE**)
(Communicated by Kdsaku YoSIDA, M. J. A,, May 12, 1983)

§ 1. Introduction. In this note we treat a d-dimensional sta-
tionary Gaussian process X=(X(t); t ¢ R) which satisfies the following
stochastic differential equation, [«, 3, r]1-langevin equation

A1) dX@) = (— BX(t) +f° 1(8)X(t + s)ds)dt +adB(t),

where (i) @ and g are symmetric positive definite d X d-matrices (ii) 7
is a d X d-matrix valued L‘-function on (— oo, 0) (iii) (B@¥);tc R) is a
d-dimensional Brownian motion having the causal condition: ¢(X(s);
se(—oo, t)=0(B(s)—B(s,); 8, s, € (— oo, t]) for any £ e R.

The purpose of this note is to investigate under what condition
the solution X of equation (1.1) has T-positivity. By T-positivity we
mean that the covariance function R of X can be represented in the
form

1.2) R(t):fm et (teR,

where ¢ is a bounded d X d-Borel measure matrix valued function on
[0, ©). One of the authors ([1]) has shown that a one-dimensional
stationary Gaussian process X has T-positivity with ¢({0}) =0 and

r (Z+27Me(d2) < oo if and only if X satisfies [«, B, 7]-Langevin equation
0

with a triple [«, 8, 7] satisfying
(1.3) « and B are positive numbers

1.4 T(s)=J[ e’u(d2) with a Borel measure p on [0, o) satis-
0,00)

fying the conditions x({0})=0 and ,B>L 2 1u(dd).
0,00)

Taking into account of (1.3) and (1.4), we are now given a triple
[e, B, 7] such that

(1.5) a and B are symmetric positive definite d X d-matrices
N

1.6) 7(89)=2; p™e' with non-negative definite matrices p™
n=1

(1<n<N) and distinct positive numbers ¢, 1<n<N)
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N n
an g—> % is a positive definite d X d-matrix.
n=1 »

At first we treat the case d=2 and «=I. Then we have the fol-
lowing key lemma.

Key lemma. There exist a natural integer M, positive numbers
P, A<n< M) and non-negative definite 2 X 2-matrices K,(1 <n<M)
such that

. 0 -1 M K
1.8) (ﬁ—(zc)l—j e—“sr(ds)) =5 K recm.
- a=1 P, —1§
By virtue of this Key lemma, we get the following

Theorem 1.1. (i) There exist a pair of 2-dimensional station-
ary Gaussian process X and 2-dimensional Brownian motion B which
satisfies [e, B, Y1-Langevin equation (1.1).

(il) X has T-positivity if and only if

9) g p= 3 117 -

. , M= 3 foranynefl,2, ..., N}
I

Conversely, let X be any d-dimensional stationary Gaussian pro-
cess having T-positivity with its covariance function R of the form
(1.2) such that o=, 0§, with positive definite d X d-matrices ¢
(1<n< M) and distinet positive numbers p, A <n<M). Then we have

Theorem 1.2. () If o™ A <n<M) commute mutually, then
there exists a triple [e, B, 7] satisfying (1.5)-(1.7) such that X satisfies
[e, B, T]-Langevin equation (1.1).

(i) If M <3, then the necessary and sufficient condition that X
satisfies [, B, T1-Langevin equation with some triple [«, B, 1] satisfying
1.5)-1.7) and is that ¢ A<n< M) commute mutually.

Finally we can get a generalized Einstein relation for the solution
X of [, B, T]-Langevin equation (1.1).

Theorem 1.3. «*/2=R(0)C,,,,
where

Cﬁ,r=ﬂ(fk ((aBa' — eI+ af(§)a ") (afa '+ +af(—E)a™)™) de)-‘.
and the symbol " denotes Fourier transform.

§2. Outline of proofs. For the proof of Key lemma we define a
2% 2-matrix valued function Z on C* by

@1 ZO= p+icz—f’ e-7(ds).
Without loss of generality, we can assume that ¢,<q,., A<n<N-1)
and g™ (1<n<N) are all positive definite. From ([1]) there exist
positive numbers a, and b, A <n<N+1) such that (i) ¢,<q.<a,.,and
0,.<¢,<b,,; 1<n<N)
. YA (—1 At (—1i€+b,)
() Z,0= Zn 2 ( ?‘C"I—an) and Z,(©) = Zn 1 ! n)
! S (—iC+q,) T L (—it+ )
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We set Z({)=Z(—1¢). Then we see that for anyne{1,2, ..., N}det Z,
is continuous in (—gq,, —q..), det Z(—q,+0)=det Z,(—q,—0) =00
and further for anyne{1,2, ..., N+1} detZ,(—a,)<0 and det Z,(—b,)
>0, which implies that there exist 2N-+2 positive numbers , such
that (1) 72 1<70, <@ <Qons1<¥nse A<N<N) (ii) the set of zeros of
det Z,={—1ir,; 1<n<2N+2}. It then follows that there exist an
integer M, positive numbers p, (1<n<M) and 2x2-matrices K, (1<n
< M) such that
(1) 2.<Pp,s A<M -1)

(ii) }’_fleFI
see Z _1= M
(iii) (Z(©) :z:j — C +pn

It can be readily verified that K, (1<n<M) are non-negative definite.
Therefore we have completed the proof of Key lemma.

By virtue of Key lemma, similarly to Theorem 8.1 and Lemma 4.1
in [1], we can get Theorem 1.1 (i). By calculating the covariance
function R, we find that R(f)=> %, e ?g™ for t>0 and R(t)
=3 M eg-rrltli(gm)* for t<0, where (¢)* denotes the transpose of ¢™

and
M

a™ =Z

A direct calculation gives Theorem 1.1 (ii).

By diagonizing the matrices ¢™ (1<n<M) simultaneously, we
find from Theorem 6.1 in [1] that Theorem 1.2 (i) holds. By noting
that if M <3, then the matrices K, 1<n<M) commute mutually, we
can get Theorem 1.2 (ii).

Theorem 1.3 follows from the same consideration as (9.13) in [1].

(A<n<M).
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