51. On a Multi-Dimensional [$\alpha, \beta, \gamma]$-Langevin Equation

By Yuji Nakano*) and Yasunori Okabe**)

(Communicated by Kôsaku Yosida, m. J. A., May 12, 1983)
§ 1. Introduction. In this note we treat a d-dimensional stationary Gaussian process $X=(X(t) ; t \in R)$ which satisfies the following stochastic differential equation, $[\alpha, \beta, \gamma]$-langevin equation

$$
\begin{equation*}
d X(t)=\left(-\beta X(t)+\int_{-\infty}^{0} \gamma(s) X(t+s) d s\right) d t+\alpha d B(t) \tag{1.1}
\end{equation*}
$$

where (i) α and β are symmetric positive definite $d \times d$-matrices (ii) γ is a $d \times d$-matrix valued L^{1}-function on $(-\infty, 0)$ (iii) $(B(t) ; t \in R)$ is a d-dimensional Brownian motion having the causal condition: $\sigma(X(s)$; $s \in(-\infty, t])=\sigma\left(B\left(s_{1}\right)-B\left(s_{2}\right) ; s_{1}, s_{2} \in(-\infty, t]\right)$ for any $t \in \boldsymbol{R}$.

The purpose of this note is to investigate under what condition the solution X of equation (1.1) has T-positivity. By T-positivity we mean that the covariance function R of \boldsymbol{X} can be represented in the form
(1.2) $\quad R(t)=\int_{[0, \infty)} e^{-|t| \lambda} \sigma(d \lambda) \quad(t \in R)$,
where σ is a bounded $d \times d$-Borel measure matrix valued function on $[0, \infty)$. One of the authors ([1]) has shown that a one-dimensional stationary Gaussian process \boldsymbol{X} has T-positivity with $\sigma(\{0\})=0$ and $\int_{0}^{\infty}\left(\lambda^{2}+\lambda^{-1}\right) \sigma(d \lambda)<\infty$ if and only if \boldsymbol{X} satisfies $[\alpha, \beta, \gamma]$-Langevin equation with a triple $[\alpha, \beta, \gamma]$ satisfying
(1.3) α and β are positive numbers
(1.4) $\gamma(s)=\int_{[0, \infty)} e^{s \lambda} \mu(d \lambda)$ with a Borel measure μ on [0, ∞) satisfying the conditions $\mu(\{0\})=0$ and $\beta>\int_{[0, \infty)} \lambda^{-1} \mu(d \lambda)$.

Taking into account of (1.3) and (1.4), we are now given a triple $[\alpha, \beta, \gamma]$ such that
(1.5) α and β are symmetric positive definite $d \times d$-matrices
(1.6) $\gamma(s)=\sum_{n=1}^{N} \mu^{(n)} e^{s q_{n}}$ with non-negative definite matrices $\mu^{(n)}$ $(1 \leq n \leq N)$ and distinct positive numbers $q_{n}(1 \leq n \leq N)$

[^0](1.7) $\quad \beta-\sum_{n=1}^{N} \frac{\mu^{(n)}}{q_{n}}$ is a positive definite $d \times d$-matrix.

At first we treat the case $d=2$ and $\alpha=I$. Then we have the following key lemma.

Key lemma. There exist a natural integer M, positive numbers $p_{n}(1 \leq n \leq M)$ and non-negative definite 2×2-matrices $K_{n}(1 \leq n \leq M)$ such that

$$
\begin{equation*}
\left(\beta-(i \zeta) I-\int_{-\infty}^{0} e^{-i \zeta s} \gamma(d s)\right)^{-1}=\sum_{n=1}^{M} \frac{K_{n}}{p_{n}-i \zeta} \quad\left(\zeta \in C^{+}\right) \tag{1.8}
\end{equation*}
$$

By virtue of this Key lemma, we get the following
Theorem 1.1. (i) There exist a pair of 2-dimensional stationary Gaussian process \boldsymbol{X} and 2-dimensional Brownian motion \boldsymbol{B} which satisfies $[\alpha, \beta, \gamma]$-Langevin equation (1.1).
(ii) $\quad \boldsymbol{X}$ has T-positivity if and only if

$$
\begin{equation*}
\left[\beta, \mu^{(n)}\right]=\sum_{m=1}^{N} \frac{\left[\mu^{(m)}, \mu^{(n)}\right]}{q_{m}+q_{n}} \quad \text { for any } n \in\{1,2, \cdots, N\} \tag{1.9}
\end{equation*}
$$

Conversely, let \boldsymbol{X} be any d-dimensional stationary Gaussian process having T-positivity with its covariance function R of the form (1.2) such that $\sigma=\sum_{n=1}^{M} \sigma^{(n)} \delta_{\left\{p_{n}\right\}}$ with positive definite $d \times d$-matrices $\sigma^{(n)}$ $(1 \leq n \leq M)$ and distinct positive numbers $p_{n}(1 \leq n \leq M)$. Then we have

Theorem 1.2. (i) If $\sigma^{(n)}(1 \leq n \leq M)$ commute mutually, then there exists a triple $[\alpha, \beta, \gamma]$ satisfying (1.5)-(1.7) such that \boldsymbol{X} satisfies [$\alpha, \beta, \gamma]$-Langevin equation (1.1).
(ii) If $M \leq 3$, then the necessary and sufficient condition that \boldsymbol{X} satisfies $[\alpha, \beta, \gamma]$-Langevin equation with some triple $[\alpha, \beta, \gamma]$ satisfying (1.5)-(1.7) and is that $\sigma^{(n)}(1 \leq n \leq M)$ commute mutually.

Finally we can get a generalized Einstein relation for the solution \boldsymbol{X} of $[\alpha, \beta, \gamma]$-Langevin equation (1.1).

Theorem 1.3. $\alpha^{2} / 2=R(0) C_{\beta, r}$, where

$$
C_{\beta, \gamma}=\pi\left(\int_{R}\left(\left(\alpha \beta \alpha^{-1}-i \xi I+\alpha \hat{\gamma}(\xi) \alpha^{-1}\right)^{-1}\left(\alpha \beta \alpha^{-1}+i \xi I+\alpha \hat{\gamma}(-\xi) \alpha^{-1}\right)^{-1}\right) d \xi\right)^{-1} .
$$

and the symbol ${ }^{\wedge}$ denotes Fourier transform. $^{\text {d }}$
§ 2. Outline of proofs. For the proof of Key lemma we define a 2×2-matrix valued function Z on C^{+}by

$$
\begin{equation*}
Z(\zeta)=\beta+i \zeta I-\int_{-\infty}^{0} e^{-i \zeta s} \gamma(d s) \tag{2.1}
\end{equation*}
$$

Without loss of generality, we can assume that $q_{n}<q_{n+1}(1 \leq n \leq N-1)$ and $\mu^{(n)}(1 \leq n \leq N)$ are all positive definite. From ([1]) there exist positive numbers a_{n} and $b_{n}(1 \leq n \leq N+1)$ such that (i) $a_{n}<q_{n}<a_{n+1}$ and $b_{n}<q_{n}<b_{n+1}(1 \leq n \leq N)$
(ii) $\quad Z_{11}(\zeta)=\frac{\sum_{n=1}^{N+1}\left(-i \zeta+a_{n}\right)}{\sum_{n=1}^{N}\left(-i \zeta+q_{n}\right)} \quad$ and $\quad Z_{22}(\zeta)=\frac{\sum_{n=1}^{N+1}\left(-i \zeta+b_{n}\right)}{\sum_{n=1}^{N}\left(-i \zeta+q_{n}\right)}$.

We set $Z_{0}(\zeta)=Z(-i \zeta)$. Then we see that for any $n \in\{1,2, \cdots, N\} \operatorname{det} Z_{0}$ is continuous in $\left(-q_{n},-q_{n+1}\right)$, $\operatorname{det} Z_{0}\left(-q_{n}+0\right)=\operatorname{det} Z_{0}\left(-q_{n}-0\right)=\infty$ and further for any $n \in\{1,2, \cdots, N+1\} \operatorname{det} Z_{0}\left(-a_{n}\right) \leq 0$ and $\operatorname{det} Z_{0}\left(-b_{n}\right)$ ≥ 0, which implies that there exist $2 N+2$ positive numbers r_{n} such that (i) $r_{2 n-1} \leq r_{2 n}<q_{n}<q_{2 n+1} \leq r_{2 n+2}(1 \leq n \leq N)$ (ii) the set of zeros of $\operatorname{det} Z_{0}=\left\{-i r_{n} ; 1 \leq n \leq 2 N+2\right\}$. It then follows that there exist an integer M, positive numbers $p_{n}(1 \leq n \leq M)$ and 2×2-matrices $K_{n}(1 \leq n$ $\leq M$) such that
(i) $p_{n}<p_{n+1}(1 \leq n \leq M-1)$
(ii) $\sum_{n=1}^{M} K_{n}=I$
(iii) $(Z(\zeta))^{-1}=\sum_{n=1}^{M} \frac{K_{n}}{-i \zeta+p_{n}}$.

It can be readily verified that $K_{n}(1 \leq n \leq M)$ are non-negative definite. Therefore we have completed the proof of Key lemma.

By virtue of Key lemma, similarly to Theorem 3.1 and Lemma 4.1 in [1], we can get Theorem 1.1 (i). By calculating the covariance function R, we find that $R(t)=\sum_{n=1}^{M} e^{-p_{n}|t|} \sigma^{(n)}$ for $t>0$ and $R(t)$ $=\sum_{n=1}^{M} e^{-p_{n}|t|}\left(\sigma^{(n)}\right)^{*}$ for $t<0$, where $\left(\sigma^{(n)}\right)^{*}$ denotes the transpose of $\sigma^{(n)}$ and

$$
\sigma^{(n)}=\sum_{n=1}^{M} \frac{K_{n} K_{m}}{p_{n}+p_{m}} \quad(1 \leq n \leq M)
$$

A direct calculation gives Theorem 1.1 (ii).
By diagonizing the matrices $\sigma^{(n)}(1 \leq n \leq M)$ simultaneously, we find from Theorem 6.1 in [1] that Theorem 1.2 (i) holds. By noting that if $M \leq 3$, then the matrices $K_{n}(1 \leq n \leq M)$ commute mutually, we can get Theorem 1.2 (ii).

Theorem 1.3 follows from the same consideration as (9.13) in [1].

Reference

[1] Y. Okabe: On a stochastic differential equation for a stationary Gaussian process with T-positivity and fluctuation-dissipation theorem. J. Fac. Sci. Univ. of Tokyo, Sec. 1A, 28, 169-213 (1981).

[^0]: *) Department of Economics, Shiga University, 1-1, Banba 1-chome, Hikone, Shiga 522.
 **) Department of Mathematics, Faculty of Science, University of Tokyo, Hongo, Tokyo 113.

