51. On a Multi-Dimensional [a, β , γ]-Langevin Equation

By Yuji NAKANO*) and Yasunori OKABE**)

(Communicated by Kôsaku Yosida, M. J. A., May 12, 1983)

§1. Introduction. In this note we treat a *d*-dimensional stationary Gaussian process $X = (X(t); t \in \mathbb{R})$ which satisfies the following stochastic differential equation, $[\alpha, \beta, \tilde{\gamma}]$ -langevin equation

(1.1)
$$dX(t) = \left(-\beta X(t) + \int_{-\infty}^{0} \tilde{\tau}(s) X(t+s) ds\right) dt + \alpha dB(t),$$

where (i) α and β are symmetric positive definite $d \times d$ -matrices (ii) γ is a $d \times d$ -matrix valued L^1 -function on $(-\infty, 0)$ (iii) $(B(t); t \in \mathbf{R})$ is a d-dimensional Brownian motion having the causal condition: $\sigma(X(s);$ $s \in (-\infty, t]) = \sigma(B(s_1) - B(s_2); s_1, s_2 \in (-\infty, t])$ for any $t \in \mathbf{R}$.

The purpose of this note is to investigate under what condition the solution X of equation (1.1) has T-positivity. By T-positivity we mean that the covariance function R of X can be represented in the form

(1.2)
$$R(t) = \int_{[0,\infty)} e^{-|t|\lambda} \sigma(d\lambda) \qquad (t \in \mathbf{R}),$$

where σ is a bounded $d \times d$ -Borel measure matrix valued function on $[0, \infty)$. One of the authors ([1]) has shown that a one-dimensional stationary Gaussian process X has T-positivity with $\sigma(\{0\}) = 0$ and $\int_0^{\infty} (\lambda^2 + \lambda^{-1})\sigma(d\lambda) < \infty$ if and only if X satisfies $[\alpha, \beta, \gamma]$ -Langevin equation with a triple $[\alpha, \beta, \gamma]$ satisfying

- (1.3) α and β are positive numbers
- (1.4) $\gamma(s) = \int_{[0,\infty)} e^{s\lambda} \mu(d\lambda)$ with a Borel measure μ on $[0,\infty)$ satis-

fying the conditions $\mu(\{0\}) = 0$ and $\beta > \int_{[0,\infty)} \lambda^{-1} \mu(d\lambda)$.

Taking into account of (1.3) and (1.4), we are now given a triple $[\alpha, \beta, \gamma]$ such that

(1.5) α and β are symmetric positive definite $d \times d$ -matrices

(1.6) $\gamma(s) = \sum_{n=1}^{N} \mu^{(n)} e^{sq_n}$ with non-negative definite matrices $\mu^{(n)}$ ($1 \le n \le N$) and distinct positive numbers q_n ($1 \le n \le N$)

^{*)} Department of Economics, Shiga University, 1-1, Banba 1-chome, Hikone, Shiga 522.

^{**} Department of Mathematics, Faculty of Science, University of Tokyo, Hongo, Tokyo 113.

(1.7) $\beta - \sum_{n=1}^{N} \frac{\mu^{(n)}}{q_n}$ is a positive definite $d \times d$ -matrix.

At first we treat the case d=2 and $\alpha=I$. Then we have the following key lemma.

Key lemma. There exist a natural integer M, positive numbers p_n $(1 \le n \le M)$ and non-negative definite 2×2 -matrices $K_n (1 \le n \le M)$ such that

(1.8)
$$\left(\beta-(i\zeta)I-\int_{-\infty}^{0}e^{-i\zeta s}\gamma(ds)\right)^{-1}=\sum_{n=1}^{M}\frac{K_{n}}{p_{n}-i\zeta}$$
 $(\zeta \in C^{+}).$

By virtue of this Key lemma, we get the following

Theorem 1.1. (i) There exist a pair of 2-dimensional stationary Gaussian process X and 2-dimensional Brownian motion **B** which satisfies $[\alpha, \beta, \gamma]$ -Langevin equation (1.1).

(ii) X has T-positivity if and only if

(1.9)
$$[\beta, \mu^{(n)}] = \sum_{m=1}^{N} \frac{[\mu^{(m)}, \mu^{(n)}]}{q_m + q_n}$$
 for any $n \in \{1, 2, \dots, N\}$.

Conversely, let X be any d-dimensional stationary Gaussian process having T-positivity with its covariance function R of the form (1.2) such that $\sigma = \sum_{n=1}^{M} \sigma^{(n)} \delta_{\{p_n\}}$ with positive definite $d \times d$ -matrices $\sigma^{(n)}$ $(1 \le n \le M)$ and distinct positive numbers p_n $(1 \le n \le M)$. Then we have

Theorem 1.2. (i) If $\sigma^{(n)}$ $(1 \le n \le M)$ commute mutually, then there exists a triple $[\alpha, \beta, \gamma]$ satisfying (1.5)–(1.7) such that X satisfies $[\alpha, \beta, \gamma]$ -Langevin equation (1.1).

(ii) If $M \leq 3$, then the necessary and sufficient condition that X satisfies $[\alpha, \beta, \gamma]$ -Langevin equation with some triple $[\alpha, \beta, \gamma]$ satisfying (1.5)–(1.7) and is that $\sigma^{(n)}$ ($1 \leq n \leq M$) commute mutually.

Finally we can get a generalized Einstein relation for the solution X of $[\alpha, \beta, \gamma]$ -Langevin equation (1.1).

Theorem 1.3. $\alpha^2/2 = R(0)C_{\beta,\gamma}$,

where

$$C_{\beta,\gamma} = \pi \left(\int_{\mathbf{R}} ((\alpha \beta \alpha^{-1} - i\xi I + \alpha \hat{\gamma}(\xi) \alpha^{-1})^{-1} (\alpha \beta \alpha^{-1} + i\xi I + \alpha \hat{\gamma}(-\xi) \alpha^{-1})^{-1}) d\xi \right)^{-1}.$$

and the symbol ^ denotes Fourier transform.

§ 2. Outline of proofs. For the proof of Key lemma we define a 2×2 -matrix valued function Z on C^+ by

(2.1) $Z(\zeta) = \beta + i\zeta I - \int_{-\infty}^{0} e^{-i\zeta s} \Upsilon(ds).$

Without loss of generality, we can assume that $q_n < q_{n+1}$ $(1 \le n \le N-1)$ and $\mu^{(n)}$ $(1 \le n \le N)$ are all positive definite. From ([1]) there exist positive numbers a_n and b_n $(1 \le n \le N+1)$ such that (i) $a_n < q_n < a_{n+1}$ and $b_n < q_n < b_{n+1}$ $(1 \le n \le N)$

(ii)
$$Z_{11}(\zeta) = \frac{\sum_{n=1}^{N+1} (-i\zeta + a_n)}{\sum_{n=1}^{N} (-i\zeta + q_n)}$$
 and $Z_{22}(\zeta) = \frac{\sum_{n=1}^{N+1} (-i\zeta + b_n)}{\sum_{n=1}^{N} (-i\zeta + q_n)}$

172

We set $Z_0(\zeta) = Z(-i\zeta)$. Then we see that for any $n \in \{1, 2, \dots, N\}$ det Z_0 is continuous in $(-q_n, -q_{n+1})$, det $Z_0(-q_n+0) = \det Z_0(-q_n-0) = \infty$ and further for any $n \in \{1, 2, \dots, N+1\}$ det $Z_0(-a_n) \le 0$ and det $Z_0(-b_n) \ge 0$, which implies that there exist 2N+2 positive numbers r_n such that (i) $r_{2n-1} \le r_{2n} < q_n < q_{2n+1} \le r_{2n+2}$ ($1 \le n \le N$) (ii) the set of zeros of det $Z_0 = \{-ir_n; 1 \le n \le 2N+2\}$. It then follows that there exist an integer M, positive numbers p_n ($1 \le n \le M$) and 2×2 -matrices K_n ($1 \le n$ $\le M$) such that

(i) $p_n < p_{n+1} \ (1 \le n \le M - 1)$

(ii)
$$\sum_{n=1}^{M} K_n = I$$

(iii) $(Z(\zeta))^{-1} = \sum_{n=1}^{M} \frac{K_n}{-i\zeta + p_n}$

It can be readily verified that K_n $(1 \le n \le M)$ are non-negative definite. Therefore we have completed the proof of Key lemma.

By virtue of Key lemma, similarly to Theorem 3.1 and Lemma 4.1 in [1], we can get Theorem 1.1 (i). By calculating the covariance function R, we find that $R(t) = \sum_{n=1}^{M} e^{-p_n|t|} \sigma^{(n)}$ for t > 0 and R(t) $= \sum_{n=1}^{M} e^{-p_n|t|} (\sigma^{(n)})^*$ for t < 0, where $(\sigma^{(n)})^*$ denotes the transpose of $\sigma^{(n)}$ and

$$\sigma^{(n)} = \sum_{n=1}^{M} \frac{K_n K_m}{p_n + p_m} \qquad (1 \le n \le M).$$

A direct calculation gives Theorem 1.1 (ii).

By diagonizing the matrices $\sigma^{(n)}$ $(1 \le n \le M)$ simultaneously, we find from Theorem 6.1 in [1] that Theorem 1.2 (i) holds. By noting that if $M \le 3$, then the matrices K_n $(1 \le n \le M)$ commute mutually, we can get Theorem 1.2 (ii).

Theorem 1.3 follows from the same consideration as (9.13) in [1].

Reference

 Y. Okabe: On a stochastic differential equation for a stationary Gaussian process with T-positivity and fluctuation-dissipation theorem. J. Fac. Sci. Univ. of Tokyo, Sec. 1A, 28, 169-213 (1981).

No. 5]