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On Degrees of Non.Roughness of Real
Projective Varieties
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Department of Mathematics, Kyoto University

(Communicated by Heisuke HIRON.m, M.Z.A., June 14, 1983)

Related to the Hilbert’s 16th problem, the following problem is
presented since 1965 (see Gudkov [3] p. 485, [4] p. 6 and Risler [6]
p. 23)"

Problem. Does each real plane algebraic curve of a fixed order
have a well-defined and finite degree of non-roughness ?

In short, the degree of non-roughness of a curve (or a variety)
represents its topological degeneration (cf. Definition 2).

The purpose of the present note is to nswer this problem affier-
matively thanks to the stratification theory of R. Thom ([8]). Further
we see that the degrees of non-roughness of real projective varieties
of a fixed order are well-defined and have a finite upper bound (Theo-
rem 1).

We consider the "equivariant" isotopy type of a complexified
variety" Theorem 2 (cf. [7]).

1. Formulations of results. Let RP;V.. RPv. be the set of
f=(f,..., f) considered modulo non-zero-constants in each com-
ponent, where f is a non-zero homogeneous polynomial of order d,

with variables x0, x,..., X and with coefficients, in R, and N--(n+nd)
--1 (i=1, ..., s).

We mean by a real projective variety of order (d, ..., d) simply
a point of RP: RP. Each real projective variety [f] deter-
mines naturally a subset V[f] of RP and invariant subset CV[f] of
CP under the complex conjugation, by the equation f(x) f(x)
--0.

The first half of the sixteenth problem of Hilbert is regarded,
in an extended sense, as the investigation of isotopy types of pairs
(RPn, V[f]) (c. [4]).

Let / (resp. ) be a semi-algebraic stratification of a closed
subset A of RP (resp. B of CP, being invariant under the complex
conjugation CP--.CPg. (A subset of an algebraic manifold is, semi-
algebraic i it is semi-algebraic on each affine chart.)

Definition 1. Two real projective varieties [f], [f’] e RPIx
xRP of a same degree (dl,..., ds) are calle=l isotopic tel. (resp.
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equivariantly isotopic tel. )if there exists a continuous one para-
meter family of homeomorphisms h," RP-RP (resp. h," cpn--CP
commuting with the complex conjugation), t e [0, 1], such that h0 is
the identity, each h, maps each stratum of (resp. ) to itself, and

h(V[f] A)-- V[f’] A (resp. h(CV[f] B)--CV[f’] ( B).
The following definition is based on that due to Andronov and

Gudkov [3], [4] (with the origin in [1]).
Definition 2. A real projective variety [f] e X--RP RP’

is of degree of non-roughness 0 (alternatively, rough, rigid, stable,
grossier) if there exists a neighborhood U of [f] in X such that any

[f’] e U is isotopic to [f] rel. . Inductively, a real projective variety

[f] is. of degree of non-roughness r+ 1 if, firstly, for any neighborhood
V of [f], there exists a [g] e V of degree of non-roughness r which is
not isotopic to [f] rel. , and, secondly, there exists, a neighborhood
W of [f] such that any [h] e W that is not of degree of non-roughness

k<=r is isotopic to [f] rel. .
Theorem 1. Let be as above. Then the degrees of non-rough-

ness of real projective arieties are well-defined and have a finite upper
bound de.pending on the number of variables and the order.

If we put s--1 and n--2, then our Theorem 1 and Remark 1 below
answer the previous problem"

Corollary. Each real plane algebraic curve of a fixed order has
a well-defined and finite degree of non-roughness.

The notion of degree of non-roughness (Definition 2) can be ex-
tended, word or word, to the case of an arbitrary topological space
X with an equivalence relation E (cf. [3], 8).

Theorem 2. Let . be as above. Then the degree of non-
roughness of real projective varieties with respect to the equivalence

of equivariant isotopy tel.. are well-defined and have a finite upper
bound depending on the number of variables and the order.

2. General properties of degrees of non.roughness. Let X be a
topological space and E be an equivalence relation on X. We consider
the degrees of non-roughness of points in X (see 1).

Lemma 1. If a point x e X has a finite degree of non-roughness,
then it is uniquely determined.

Lemma 2. A point x e X is of degree of non-roughness r+l if
and only if x is an interior point of the E-equivalence class of itself
in the complement to X of the subspace of points of degrees of
non-roughness r (r-- 1, O, 1, ).

Remark 1. In the papers of Gudkov [3], [4], the degrees of non-
roughness are defined on a subspace of the totality of real plane
algebraic curves, and the equivalence of isotopy considered in them
is slightly weaker than ours.
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In general, the statement that each point in a subset Y_X has. a
finite (resp. bounded) degree of non-roughness with respect to (Y, E’)
follows from the same statement for (X, E), E being finer than E’.

3. Outlines of proofs of theorems. Recall that X= RP:V
RPv is the space o real projective varieties of order (d,..., d)
with (n+l)-homogeneous variables. We put

V= {([x], [f]) e RP XIf(x) f,(x) 0}
and denote n" RPX-X the projection to the latter factor. The
fiber n-[f] V of n V is just V[f].

In the situation on Theorem 1, we denote + the product strati-
fication of and the trivial stratification of X. As. well-known in
the stratification theory (cf. [8], III C), we can construct semi-alge-
braic Whitney stratifications S and T of RPX and X respectively
such that V (resp. each stratum of /) is. a union of strata of S and
7r is a stratified mapping with respect to (S, T).

For each stratum Z e T, n-(Z) is a union of strata of S, and the
family n" (-(Z), S] n-(Z))--Z is locally topologically trivial by Thom’s
first isotopy lemma (cf. [2]).

Let Et (resp E) be the equivalence relation on X of isotopy rel.
(resp. induced by the decomposition T by connected components of
strata of T). Then we see that E is finer than E.

The degree of non-roughness of a real projective variety [f] e X
with respect to E. equals to the T-depth of [f] (cf. [5]) and we have n
upper bound (at most dim X N+N+. +N).

By Remark 1, the degrees of non-roughness with respect to E
have also an upper bound.

Lemma 1 and this imply Theorem 1.
Remark 2. The mapping rl V" V--X does not admit any Thorn

stratification except for the case s= 1, d= 1 or n= 1.
For the proof of Theorem 2, we put CV= {([x], [f]) e CPX f(x)

f(x)=0} and consider the involution conj lx on CPX.
Then we can construct invariant semi-algebraic Whitney stratifica-
tions S’ and T’ of CPX and X respectively with properties as those
of S and T, and we apply the equivariant isotopy lemma, which can
be proved similarly to the non-equivariant case.

Remark 3. Theorem 1 (resp. Theorem 2) is also valid in the case
(resp..) is subanalytic.
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