80. On Degrees of Non-Roughness of Real Projective Varieties

By Goo Ishikawa

Department of Mathematics, Kyoto University

(Communicated by Heisuke HIRONAKA, M. J. A., June 14, 1983)

Related to *the Hilbert's* 16th problem, the following problem is presented since 1965 (see Gudkov [3] p. 485, [4] p. 6 and Risler [6] p. 23):

Problem. Does each real plane algebraic curve of a fixed order have a well-defined and finite degree of non-roughness?

In short, the degree of non-roughness of a curve (or a variety) represents its topological degeneration (cf. Definition 2).

The purpose of the present note is to answer this problem affiermatively thanks to the stratification theory of R. Thom ([8]). Further we see that the degrees of non-roughness of real projective varieties of a fixed order are well-defined and have a finite upper bound (Theorem 1).

We consider the "equivariant" isotopy type of a complexified variety: Theorem 2 (cf. [7]).

1. Formulations of results. Let $\mathbb{R}P^{N_1} \times \cdots \times \mathbb{R}P^{N_s}$ be the set of $f = (f_1, \dots, f_s)$ considered modulo non-zero-constants in each component, where f_i is a non-zero homogeneous polynomial of order d_i , with variables x_0, x_1, \dots, x_n and with coefficients in \mathbb{R} , and $N_i = \binom{n+d_i}{n} -1$ $(i=1, \dots, s)$.

We mean by a real projective variety of order (d_1, \dots, d_s) simply a point of $\mathbb{R}P^{N_1} \times \dots \times \mathbb{R}P^{N_s}$. Each real projective variety [f] determines naturally a subset V[f] of $\mathbb{R}P^n$ and invariant subset $\mathbb{C}V[f]$ of $\mathbb{C}P^n$ under the complex conjugation, by the equation $f_1(x) = \dots = f_s(x)$ = 0.

The first half of the sixteenth problem of Hilbert is regarded, in an extended sense, as the investigation of isotopy types of pairs $(\mathbb{RP}^n, V[f])$ (cf. [4]).

Let \mathcal{A} (resp. \mathcal{B}) be a semi-algebraic stratification of a closed subset A of $\mathbb{R}P^n$ (resp. B of $\mathbb{C}P^n$, \mathcal{B} being invariant under the complex conjugation $\mathbb{C}P^n \to \mathbb{C}P^n$). (A subset of an algebraic manifold is *semialgebraic* if it is semi-algebraic on each affine chart.)

Definition 1. Two real projective varieties $[f], [f'] \in \mathbb{R}P^{N_1} \times \cdots \times \mathbb{R}P^{N_s}$ of a same degree (d_1, \dots, d_s) are called *isotopic rel.* \mathcal{A} (resp.

G. ISHIKAWA

equivariantly isotopic rel. \mathcal{B}) if there exists a continuous one parameter family of homeomorphisms $h_t: \mathbb{R}P^n \to \mathbb{R}P^n$ (resp. $h_t: \mathbb{C}P^n \to \mathbb{C}P^n$ commuting with the complex conjugation), $t \in [0, 1]$, such that h_0 is the identity, each h_t maps each stratum of \mathcal{A} (resp. \mathcal{B}) to itself, and

 $h_1(V[f] \cap A) = V[f'] \cap A \qquad (\text{resp. } h_1(CV[f] \cap B) = CV[f'] \cap B).$

The following definition is based on that due to Andronov and Gudkov [3], [4] (with the origin in [1]).

Definition 2. A real projective variety $[f] \in X = \mathbb{R}P^{N_1} \times \cdots \times \mathbb{R}P^{N_s}$ is of degree of non-roughness 0 (alternatively, rough, rigid, stable, grossier) if there exists a neighborhood U of [f] in X such that any $[f'] \in U$ is isotopic to [f] rel. \mathcal{A} . Inductively, a real projective variety [f] is of degree of non-roughness r+1 if, firstly, for any neighborhood V of [f], there exists a $[g] \in V$ of degree of non-roughness r which is not isotopic to [f] rel. \mathcal{A} , and, secondly, there exists a neighborhood W of [f] such that any $[h] \in W$ that is not of degree of non-roughness $k \leq r$ is isotopic to [f] rel. \mathcal{A} .

Theorem 1. Let \mathcal{A} be as above. Then the degrees of non-roughness of real projective varieties are well-defined and have a finite upper bound depending on the number of variables and the order.

If we put s=1 and n=2, then our Theorem 1 and Remark 1 below answer the previous problem:

Corollary. Each real plane algebraic curve of a fixed order has a well-defined and finite degree of non-roughness.

The notion of degree of non-roughness (Definition 2) can be extended, word for word, to the case of an arbitrary topological space X with an equivalence relation E (cf. [3], § 8).

Theorem 2. Let \mathcal{B} be as above. Then the degree of nonroughness of real projective varieties with respect to the equivalence of equivariant isotopy rel. \mathcal{B} are well-defined and have a finite upper bound depending on the number of variables and the order.

2. General properties of degrees of non-roughness. Let X be a topological space and E be an equivalence relation on X. We consider the degrees of non-roughness of points in X (see § 1).

Lemma 1. If a point $x \in X$ has a finite degree of non-roughness, then it is uniquely determined.

Lemma 2. A point $x \in X$ is of degree of non-roughness r+1 if and only if x is an interior point of the E-equivalence class of itself in the complement to X of the subspace of points of degrees of non-roughness $\leq r$ (r=-1, 0, 1, ...).

Remark 1. In the papers of Gudkov [3], [4], the degrees of nonroughness are defined on a subspace of the totality of real plane algebraic curves, and the equivalence of isotopy considered in them is slightly weaker than ours. In general, the statement that each point in a subset $Y \subseteq X$ has a finite (resp. bounded) degree of non-roughness with respect to (Y, E') follows from the same statement for (X, E), E being finer than E'.

3. Outlines of proofs of theorems. Recall that $X = \mathbb{R}P^{N_1} \times \cdots \times \mathbb{R}P^{N_s}$ is the space of real projective varieties of order (d_1, \dots, d_s) with (n+1)-homogeneous variables. We put

 $V = \{ ([x], [f]) \in \mathbb{R}P^n \times X | f_1(x) = \cdots = f_s(x) = 0 \}$ and denote $\pi : \mathbb{R}P^n \times X \to X$ the projection to the latter factor. The fiber $\pi^{-1}[f] \cap V$ of $\pi | V$ is just V[f].

In the situation on Theorem 1, we denote \mathcal{A}^+ the product stratification of \mathcal{A} and the trivial stratification of X. As well-known in the stratification theory (cf. [8], III C), we can construct semi-algebraic Whitney stratifications S and T of $\mathbb{R}P^n \times X$ and X respectively such that V (resp. each stratum of \mathcal{A}^+) is a union of strata of S and π is a stratified mapping with respect to (S, T).

For each stratum $Z \in T$, $\pi^{-1}(Z)$ is a union of strata of S, and the family $\pi : (\pi^{-1}(Z), S | \pi^{-1}(Z)) \to Z$ is locally topologically trivial by Thom's first isotopy lemma (cf. [2]).

Let E_1 (resp. E_2) be the equivalence relation on X of isotopy rel. \mathcal{A} (resp. induced by the decomposition T° by connected components of strata of T). Then we see that E_2 is finer than E_1 .

The degree of non-roughness of a real projective variety $[f] \in X$ with respect to E_2 equals to the *T*-depth of [f] (cf. [5]) and we have an upper bound (at most dim $X = N_1 + N_2 + \cdots + N_s$).

By Remark 1, the degrees of non-roughness with respect to E_1 have also an upper bound.

Lemma 1 and this imply Theorem 1.

Remark 2. The mapping $\pi | V: V \rightarrow X$ does not admit any *Thom* stratification except for the case s=1, $d_1=1$ or n=1.

For the proof of Theorem 2, we put $CV = \{([x], [f]) \in CP^n \times X | f_1(x) = \cdots = f_s(x) = 0\}$ and consider the involution $\operatorname{conj} \times 1_x$ on $CP^n \times X$. Then we can construct invariant semi-algebraic Whitney stratifications S' and T' of $CP^n \times X$ and X respectively with properties as those of S and T, and we apply the equivariant isotopy lemma, which can be proved similarly to the non-equivariant case.

Remark 3. Theorem 1 (resp. Theorem 2) is also valid in the case \mathcal{A} (resp. \mathcal{B}) is subanalytic.

References

- A. A. Andronov and L. S. Pontrjagin: Systèmes grossiers. Dokl. Akad. Nauk SSSR, 14, 247-251 (1937).
- [2] C. G. Gibson, K. Wirthmüller, A. A. du Plessis, and E. J. N. Looijenga:

No. 6]

Topological stability of smooth mappings. Lect. Notes in Math., vol. 552, Springer (1976).

- [3] D. A. Gudkov: On the ideas of roughness and degrees of non-roughness for plane algebraic curves. Mat. Sbornik, 67, 481-527 (1965).
- [4] ——: The topology of real projective algebraic varieties. Russ. Math. Surveys, 29-4, 1-79 (1974).
- [5] J. N. Mather: Stratifications and mappings, Dynamical Systems (ed. by M. M. Peixoto). Academic Press, pp. 195-223 (1973).
- [6] J. J. Risler: Sur le 16^{ème} problème de Hilbert: Un résumé et quelques ouestions. Séminaire sur la géométrie algébrique réelle (ed. by J. J. Risler). Publ. Math. de l'Université Paris VIII, pp. 11-25 (1981).
- [7] V. A. Rokhlin: Complex topological characteristic of real algebraic curves. Russ. Math. Surveys, 33-5, 85-98 (1978).
- [8] R. Thom: Ensemble et morphisms stratifiés. Bull. Amer. Math. Soc., 75, 240-284 (1969).