77. Three Commodity Flows in Graphs

By Haruko OKAMURA

Faculty of Engineering, Osaka City University, Osaka

(Communicated by Shokichi IYANAGA, M. J. A., June 14, 1983)

Let G = (V, E) be a graph (finite undirected, possibly with multiple edges but without loops). In this paper a path has no repeated edges, and we permit the path with one vertex and no edges. For two distinct vertices x, y we let $\lambda(x, y) = \lambda_G(x, y)$ be the maximal number of edge-disjoint paths between x and y, and we let $\lambda(x, x) = \infty$.

We first consider the following problem.

Let $(s_1, t_1), \dots, (s_k, t_k)$ be pairs (not necessarily distinct) of vertices of G. When is the following true?

(1.1) There exist edge-disjoint paths P_1, \dots, P_k such that P_i has ends $s_i, t_i \ (1 \le i \le k)$.

Seymour [9] and Thomassen [11] answered to this problem when k=2, and Seymour [9] when $s_1, \dots, s_k, t_1, \dots, t_k$ take only three distinct values.

Our result is the following

Theorem 1. Suppose that s_1 , s_2 , s_3 , t_1 , t_2 , t_3 are vertices of a graph G. If for each i=1, 2, 3 $\lambda(s_i, t_i) \geq 3$, then there exist edge-disjoint paths P_1 , P_2 , P_3 of G, such that P_i has ends s_i and t_i (i=1, 2, 3).

If $\lambda(s_i, t_i) \leq 2$ for some *i*, then this conclusion does not hold. Fig. 1 gives a counterexample.

For a positive integer k, we let g(k) be the smallest integer such that for every g(k)-edge-connected graph and for every vertices $s_1, \dots, s_k, t_1, \dots, t_k$ of the graph, (1.1) holds. Thomassen [11] conjectured the following.

Conjecture (Thomassen). For each odd integer $k \ge 1$, g(k) = k, and for each even integer $k \ge 2$, g(k) = k+1.

No. 6]

If k is even then g(k) > k (see [11]). It follows easily from Menger's theorem that $g(k) \le 2k-1$, thus g(1) = 1, g(2) = 3; and Cypher [1] proved $g(4) \leq 6$ and $g(5) \leq 7$. As a corollary of Theorem 1 we have the following.

Corollary. g(3)=3.

The second problem we consider is the multicommodity flow problem.

Suppose that each edge $e \in E$ has a real-valued capacity $w(e) \ge 0$, and each path has a positive value. We assume that $w \equiv 1$ and each path has value 1 when there is no explanation. For a positive number α , path αP , P denote paths of value α , 1 respectively. We say that a set of paths $\alpha_1 P_1, \dots, \alpha_n P_n$ is feasible if for each edge $e \in E$,

$$\sum_{i \in \{i \mid e \in E(P_i)\}} \alpha_i \leq w(e)$$

where $E(P_i)$ is the set of edges of P_i .

For two vertices x, y and a real number q > 0, a flow F of value q between x and y is a set of paths $\alpha_1 P_1, \dots, \alpha_n P_n$ between x and y such that $\alpha_1 + \cdots + \alpha_n = q$. When $\alpha_1, \cdots, \alpha_n$ are all integers (half-integers), F is called an integer (half-integer) flow. We say that a set of flows F_1, \dots, F_k is feasible if the set of paths of F_1, \dots, F_k is feasible.

Now the multicommodity flow problem is formulated as follows.

Let $(s_1, t_1), \dots, (s_k, t_k)$ be pairs of vertices of G, as before, and suppose that $q_i \ge 0$ ($1 \le i \le k$) are real-valued demands. When is the following true?

(1.2) There exist feasible flows F_1, \dots, F_k , such that F_i has ends s_i and t_i and value q_i $(1 \le i \le k)$.

Remark. When k=3, $w\equiv 1$, and $q_i=1$ ($1\leq i\leq 3$), Theorem 1 implies that (1.2) is true if $\lambda(s_i, t_i) \ge 3$ ($1 \le i \le 3$), and then the flows may be chosen as integer flows.

For a set $X \subseteq V$, we let $\partial(X) = \partial_{g}(X) \subseteq E$ be the set of edges with one end in X and the other in V-X, and we let $D(X) \subseteq \{1, 2, \dots, k\}$ be $\{i \mid 1 \le i \le k, X \cap \{s_i, t_i\} \neq \phi \neq (V-X) \cap \{s_i, t_i\}\}.$

$$\{i \mid 1 \le i \le k, X \mid \{s_i, t_i\} \neq \phi \neq (V - X) \mid \{s_i, t_i\}\}$$

It is clear that if (1.2) is true, then the following holds.

(1.3) For each $X \subseteq V$,

$$\sum_{e \in \mathfrak{d}(X)} w(e) \ge \sum_{i \in D(X)} q_i.$$

Note that $\sum_{e \in \partial(X)} w(e) = |\partial(X)|$ if $w \equiv 1$, and $\sum_{i \in D(X)} q_i = |D(X)|$ if $q_i = 1$ for any *i*.

Our second result is the following

Theorem 2. Suppose that G is a graph and w is integer-valued, and that k=3, $q_1=q_2=q_3=1$. Then (1.2) and (1.3) are equivalent.

Moreover if (1.3) holds, then the flows F_i in (1.2) may be chosen as half-integer flows.

(1.4) In general (1.2) and (1.3) are not equivalent, but in the

following cases they are equivalent.

(1.4.1) k=1 (Ford and Fulkerson [2]).

(1.4.2) k=2 (Hu [3] and Seymour [7]).

(1.4.3) $k=5, t_i=s_{i+1}$ (i=1, 2, 3, 4) and $t_5=s_1$ (Papernov [6]).

(1.4.4) k=6, and the (s_i, t_i) correspond to the six pairs of a set of four vertices (Seymour [8] and Papernov [6]).

(1.4.5) $s_1 = s_2 = \cdots = s_j$ and $s_{j+1} = \cdots = s_k$ (obvious extension of (1.4.2)).

(1.4.6) The graph $(V, E \cup \{e_1, \dots, e_k\})$ is planar, where the edge e_i has ends s_i and t_i $(1 \le i \le k)$ (Seymour [10]).

(1.4.7) G is planar and can be drawn in the plane so that $s_1, \dots, s_k, t_1, \dots, t_k$ are all on the boundary of the infinite face (Okamura and Seymour [4]).

(1.4.8) G is planar and can be drawn in the plane so that $s_1, \dots, s_j, t_1, \dots, t_j$ are all on the boundary of a face and $s_{j+1}, \dots, s_k, t_{j+1}, \dots, t_k$ are all on the boundary of the infinite face (Okamura [5]).

(1.4.9) G is planar and can be drawn in the plane so that $s_{j+1}, \dots, s_k, t_1, t_2, \dots, t_k$ are all on the boundary of the infinite face, and $t_1 = \dots = t_j$ (Okamura [5]).

Moreover if (1.3) and the following (1.5) hold in each case except (1.4.3), or if (1.3) holds and w, q_i are even-integer-valued in the case (1.4.3), then the flows F_i of (1.2) may be chosen as integer flows.

(1.5) w and q_i are integer-valued, and for each vertex $x \in V$,

$$\sum_{e \in \partial(x)} w(e) - \sum_{i \in D(x)} q_i$$

is even.

(1.4.1)-(1.4.5) are all configurations of (s_i, t_i) for which (1.2) and (1.3) are equivalent for all graphs G and all w, q_i (see [8]). When $q_i > 0$ ($1 \le i \le 3$), the case of Theorem 2 is the only case for which (1.2) and (1.3) are equivalent for all graphs G and all w, (s_i, t_i) . Fig. 1 gives a counterexample with $q_1=2$, $q_2=q_3=1$.

The detailed proofs of the theorems will be published elsewhere.

References

- [1] A. Cypher: An approach to the k paths problem. Proc. 12th Annual ACM Symposium on Theory of Computing, pp. 211–217 (1980).
- [2] L. R. Ford, Jr., and D. R. Fulkerson: Maximal flow through a network. Can. J. Math., 8, 399-404 (1956).
- [3] T. C. Hu: Multi-commodity network flows. Operations Res., 11, 344-360 (1963).
- [4] H. Okamura and P. D. Seymour: Multicommodity flows in planar graphs. J. Combin. Theory, Ser. B, 31, 75-81 (1981).
- [5] H. Okamura: Multicommodity flows in graphs. Discrete Applied Math., 6, 55-62 (1983).

No. 6]

- [6] B. A. Papernov: Realizability of multi-product flows. Compendium Investigations in Discrete Optimization. Nauka, Moscow (1976) (in Russian).
- [7] P. D. Seymour: A short proof of two-commodity flow theorem. J. Combin. Theory, Ser. B, 26, 370-371 (1979).

- [8] —: Four terminus flows. Networks, 10, 79-86 (1980).
 [9] —: Disjoint paths in graphs. Discrete Math., 29, 293-309 (1980).
 [10] —: On odd cuts and plane multicommodity flows. Proc. London Math. Soc., (3) 42, 178–192 (1981).
- [11] C. Thomassen: 2-linked graphs. Europ. J. Combinatorics, 1, 371-378 (1980).