77. Three Commodity Flows in Graphs

By Haruko Okamura
Faculty of Engineering, Osaka City University, Osaka
(Communicated by Shokichi Iyanaga, m. J. A., June 14, 1983)

Let $G=(V, E)$ be a graph (finite undirected, possibly with multiple edges but without loops). In this paper a path has no repeated edges, and we permit the path with one vertex and no edges. For two distinct vertices x, y we let $\lambda(x, y)=\lambda_{G}(x, y)$ be the maximal number of edge-disjoint paths between x and y, and we let $\lambda(x, x)=\infty$.

We first consider the following problem.
Let $\left(s_{1}, t_{1}\right), \cdots,\left(s_{k}, t_{k}\right)$ be pairs (not necessarily distinct) of vertices of G. When is the following true?
(1.1) There exist edge-disjoint paths P_{1}, \cdots, P_{k} such that P_{i} has ends $s_{i}, t_{i}(1 \leq i \leq k)$.

Seymour [9] and Thomassen [11] answered to this problem when $k=2$, and Seymour [9] when $s_{1}, \cdots, s_{k}, t_{1}, \cdots, t_{k}$ take only three distinct values.

Our result is the following
Theorem 1. Suppose that $s_{1}, s_{2}, s_{3}, t_{1}, t_{2}, t_{3}$ are vertices of a graph G. If for each $i=1,2,3 \lambda\left(s_{i}, t_{i}\right) \geq 3$, then there exist edge-disjoint paths P_{1}, P_{2}, P_{3} of G, such that P_{i} has ends s_{i} and $t_{i}(i=1,2,3)$.

If $\lambda\left(s_{i}, t_{i}\right) \leq 2$ for some i, then this conclusion does not hold. Fig. 1 gives a counterexample.

Fig. 1
For a positive integer k, we let $g(k)$ be the smallest integer such that for every $g(k)$-edge-connected graph and for every vertices s_{1}, \cdots, $s_{k}, t_{1}, \cdots, t_{k}$ of the graph, (1.1) holds. Thomassen [11] conjectured the following.

Conjecture (Thomassen). For each odd integer $k \geq 1, g(k)=k$, and for each even integer $k \geq 2, g(k)=k+1$.

If k is even then $g(k)>k$ (see [11]). It follows easily from Menger's theorem that $g(k) \leq 2 k-1$, thus $g(1)=1, g(2)=3$; and Cypher [1] proved $g(4) \leq 6$ and $g(5) \leq 7$. As a corollary of Theorem 1 we have the following.

Corollary. $\quad g(3)=3$.
The second problem we consider is the multicommodity flow problem.

Suppose that each edge $e \in E$ has a real-valued capacity $w(e) \geq 0$, and each path has a positive value. We assume that $w \equiv 1$ and each path has value 1 when there is no explanation. For a positive number α, path $\alpha P, P$ denote paths of value $\alpha, 1$ respectively. We say that a set of paths $\alpha_{1} P_{1}, \cdots, \alpha_{n} P_{n}$ is feasible if for each edge $e \in E$,

$$
\sum_{i \in\left\{i \mid \in \in E\left(P_{i}\right)\right\}} \alpha_{i} \leq w(e),
$$

where $E\left(P_{i}\right)$ is the set of edges of P_{i}.
For two vertices x, y and a real number $q>0$, a flow F of value q between x and y is a set of paths $\alpha_{1} P_{1}, \cdots, \alpha_{n} P_{n}$ between x and y such that $\alpha_{1}+\cdots+\alpha_{n}=q$. When $\alpha_{1}, \cdots, \alpha_{n}$ are all integers (half-integers), F is called an integer (half-integer) flow. We say that a set of flows F_{1}, \cdots, F_{k} is feasible if the set of paths of F_{1}, \cdots, F_{k} is feasible.

Now the multicommodity flow problem is formulated as follows.
Let $\left(s_{1}, t_{1}\right), \cdots,\left(s_{k}, t_{k}\right)$ be pairs of vertices of G, as before, and suppose that $q_{i} \geq 0(1 \leq i \leq k)$ are real-valued demands. When is the following true?
(1.2) There exist feasible flows F_{1}, \cdots, F_{k}, such that F_{i} has ends s_{i} and t_{i} and value $q_{i}(1 \leq i \leq k)$.

Remark. When $k=3, w \equiv 1$, and $q_{i}=1(1 \leq i \leq 3)$, Theorem 1 implies that (1.2) is true if $\lambda\left(s_{i}, t_{i}\right) \geq 3(1 \leq i \leq 3)$, and then the flows may be chosen as integer flows.

For a set $X \subseteq V$, we let $\partial(X)=\partial_{G}(X) \subseteq E$ be the set of edges with one end in X and the other in $V-X$, and we let $D(X) \subseteq\{1,2, \cdots, k\}$ be

$$
\left\{i \mid 1 \leq i \leq k, X \cap\left\{s_{i}, t_{i}\right\} \neq \phi \neq(V-X) \cap\left\{s_{i}, t_{i}\right\}\right\}
$$

It is clear that if (1.2) is true, then the following holds.
(1.3) For each $X \subseteq V$,

$$
\sum_{e \in \partial(X)} w(e) \geq \sum_{i \in D(X)} q_{i} .
$$

Note that $\sum_{e \in \partial(x)} w(e)=|\partial(X)|$ if $w \equiv 1$, and $\sum_{i \in D(X)} q_{i}=|D(X)|$ if $q_{i}=1$ for any i.

Our second result is the following
Theorem 2. Suppose that G is a graph and w is integer-valued, and that $k=3, q_{1}=q_{2}=q_{3}=1$. Then (1.2) and (1.3) are equivalent.

Moreover if (1.3) holds, then the flows F_{i} in (1.2) may be chosen as half-integer flows.
(1.4) In general (1.2) and (1.3) are not equivalent, but in the
following cases they are equivalent.
(1.4.1) $k=1$ (Ford and Fulkerson [2]).
(1.4.2) $k=2$ (Hu [3] and Seymour [7]).
(1.4.3) $k=5, t_{i}=s_{i+1}(i=1,2,3,4)$ and $t_{5}=s_{1}$ (Papernov [6]).
(1.4.4) $k=6$, and the $\left(s_{i}, t_{i}\right)$ correspond to the six pairs of a set of four vertices (Seymour [8] and Papernov [6]).
(1.4.5) $s_{1}=s_{2}=\cdots=s_{j}$ and $s_{j+1}=\cdots=s_{k}$ (obvious extension of (1.4.2)).
(1.4.6) The graph $\left(V, E \cup\left\{e_{1}, \cdots, e_{k}\right\}\right)$ is planar, where the edge e_{i} has ends s_{i} and $t_{i}(1 \leq i \leq k)$ (Seymour [10]).
(1.4.7) G is planar and can be drawn in the plane so that s_{1}, \cdots, $s_{k}, t_{1}, \cdots, t_{k}$ are all on the boundary of the infinite face (Okamura and Seymour [4]).
(1.4.8) G is planar and can be drawn in the plane so that s_{1}, \cdots, $s_{j}, t_{1}, \cdots, t_{j}$ are all on the boundary of a face and $s_{j+1}, \cdots, s_{k}, t_{j+1}, \cdots$, t_{k} are all on the boundary of the infinite face (Okamura [5]).
(1.4.9) G is planar and can be drawn in the plane so that $s_{j_{+1}}, \cdots$, $s_{k}, t_{1}, t_{2}, \cdots, t_{k}$ are all on the boundary of the infinite face, and $t_{1}=\cdots$ $=t_{j}$ (Okamura [5]).

Moreover if (1.3) and the following (1.5) hold in each case except (1.4.3), or if (1.3) holds and w, q_{i} are even-integer-valued in the case (1.4.3), then the flows F_{i} of (1.2) may be chosen as integer flows.
(1.5) w and q_{i} are integer-valued, and for each vertex $x \in V$,

$$
\sum_{e \in \partial(x)} w(e)-\sum_{i \in D(x)} q_{i}
$$

is even.
(1.4.1)-(1.4.5) are all configurations of $\left(s_{i}, t_{i}\right)$ for which (1.2) and (1.3) are equivalent for all graphs G and all w, q_{i} (see [8]). When $q_{i}>0(1 \leq i \leq 3)$, the case of Theorem 2 is the only case for which (1.2) and (1.3) are equivalent for all graphs G and all $w,\left(s_{i}, t_{i}\right)$. Fig. 1 gives a counterexample with $q_{1}=2, q_{2}=q_{3}=1$.

The detailed proofs of the theorems will be published elsewhere.

References

[1] A. Cypher: An approach to the k paths problem. Proc. 12th Annual ACM Symposium on Theory of Computing, pp. 211-217 (1980).
[2] L. R. Ford, Jr., and D. R. Fulkerson: Maximal flow through a network. Can. J. Math., 8, 399-404 (1956).
[3] T. C. Hu: Multi-commodity network flows. Operations Res., 11, 344-360 (1963).
[4] H. Okamura and P. D. Seymour: Multicommodity flows in planar graphs. J. Combin. Theory, Ser. B, 31, 75-81 (1981).
[5] H. Okamura: Multicommodity flows in graphs. Discrete Applied Math., 6, 55-62 (1983).
[6] B. A. Papernov: Realizability of multi-product flows. Compendium Investigations in Discrete Optimization. Nauka, Moscow (1976) (in Russian).
[7] P. D. Seymour: A short proof of two-commodity flow theorem. J. Combin. Theory, Ser. B, 26, 370-371 (1979).
[8] -: Four terminus flows. Networks, 10, 79-86 (1980).
[9] -: Disjoint paths in graphs. Discrete Math., 29, 293-309 (1980).
[10] -: On odd cuts and plane multicommodity flows. Proc. London Math. Soc., (3) 42, 178-192 (1981).
[11] C. Thomassen: 2-linked graphs. Europ. J. Combinatorics, 1, 371-378 (1980).

