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1. Introduction. Swan has shown that there is a one to one
correspondence between vector bundles over a compact Hausdorff
space X and finitely generated projective modules over the ring of
continuous real-valued functions on X [7].

In the present paper, we will consider an equivariant version of
this. Let G be a compact topological group. Then a notion of G-
vector bundles is already defined [1]. On the other hand, we introduce
notions of equivariant modules, of a family F of equivariant modules
and of F-projective modules so that we have an equivariant Swan
theorem.

For each family F, we define two kinds of equivariant algebraic
K-theories associated with F. Taking a suitable family F, we have
an isomorphism of an equivariant topological K-theory and our equi-
variant algebraic K-theory associated with F.

Equivariant algebraic K-theory is studied along the line of Quillen
[6] by Fiedorowicz, Hauschild and May [4], while our approach is
along the line of the classical algebraic K-theory [5]. The reason will
clear up in a subsequent paper. Namely we will show that our equi-
variant algebraic K-theory is a Mackey functor [3]. Accordingly the
Dress induction theorem [2] is applicable. Using our equivariant
Swan theorem, we will show that Brauer and Artin type induction
theorems hold in equivariant topological K-theories KO(X) and
Ko(X). Accordingly equivariant topological K-theories are charac-
terized by the hyperelementary subgroups.

2. Families and equivariant algebraic K.theory. The word
ring will always mean associative ring with an identity element 1.
Let G be a group. A G-ring is a ring together with a G-a,ction on
A preserving the ring structure. If A is a G-ring, a AG-module is a
module M over A together with a G-action on M such that
(.) g(m,+m) (g)(gm)+ (g)(gm)

for any g e G, 2e A, m e M.
A collection F o finitely generated AG-modules is. called a family

if the following holds;
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"if M, M e F, then there exists an element N e F such that M
M is a direct summand of N".
When A is a commutative G-ring, we can consider a product of

two /G-modules as follows,. If M and M are /G-moclules, define
M(R)M to be M(R)M as a A-module with G,-action by g(m(R)m)-gm
(R)gm or g e G, m e M.

When A is a commutative G-ring, a collection F of finitely gener-
ated /G-modules is called a multiplictive family if in addition to the
above condition the following holds;

"i M, M e F, then there exists an element N e F such that M
(R)M is a direct summand of N".

Each element of F is called F-free. A AG-moclule M is called F-
projective, if there exists a /G-module N so that MN is F-free.

We introduce two kinds of equivariant algebraic K-groups as
follows. K(A F) (resp. K(/;F)) is defined to be the abelian group
given by generators [P] where P is a F-projective 4G-module, with
relations

[P]-[P’]+[P"]
whenever P-P’P (resp. O--.P--.PoP’’--.O is an exact sequence of
4G-modules).

If /is a commutative G-ring and if F is a multiplicative family
of G-modules, the product above induces a structure of commutative
ring in K(/;F) (not in K(/;F) in general).

:. tquivariant Swan theorem. Let z be one of the classical
fields R (the real numbers), C (the complex numbers) or Q (the quater-
nions). Let X be a compact Hausdorff G-space. A G-vector bundle
on X is. a -vector bundle together with a G-action on preserving

the -vector bundle structure [1]. The set of isomorphism classes
of z/G-vector bundles on X forms, an abelian semi-group under the
Whitney sum. The associated abelian group is denoted by K(X).
The tensor product o G-vector bundles induces a structure of com-
mutative ring in K(X) or z--R or C.

Let C(X) be the ring of continuous z/-valued functions on X.
Then G acts on Cz(X) by (goa)(x)=a(g-x) for g e G, a, e C(X) and
x e X. With these definitions, C(X) becomes a G-ring. Then z/ is. a
G-subring C(X) by regarding an element a e as the constant func-
tion of value a.

The set F() of all sections of is a moclule over C(X) and G acts
on F() by (g s)(x)=gs(g-x) for g e G, s e F(), x e X. It is easy to
see that with these definitions, F() becomes a C(X)G-moclule in the
sense of 2. In fact the notions of G-rings and 4G-moclules are ab-
stracted from C(X) and F().
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Let V be a finite dimensional G-representation space over A.
Regarding C(X) as a right A-module, we orm a finitely generated
C(X)G-module C(X)(R)V. Let F be the set consisting of such
modules C(X)(R) V. Then F becomes, a family in the sense of 2.
If A--R or C, then F is a multiplictive family. Denote by _V the
trivial bundle p" X VX.

Theorem :.1. Let G be a compact topological group and X be a
compact Hausdorff G-space. Then a C(X)G-module P is isomorphic
to a module of the form F() (resp. F(V)) if and only if P is F-
projective (resp. F-free).

4. Twisted group ring AG. So far we used the term AG as an
adjective. We now introduce a twisted group ring AG. As an ad-
ditive group, AG is the ordinary group ring and the multiplication is
given by

( ,g) ( ,g’ ] R(g. ,)gg’
for g, g’ e G, , R’ e A. Then AG is a AG-module in the sense of 2.

Let F be the family consisting of the direct sum (AG) of n copies
of AG where n-1, 2, 3, .... If A is a commutative G-ring, then F is
a multiplicative family. Denote by K0( ) the ordinary algebraic Ko
group [5].

Theorem 4.1. We have the following isomorphisms of abelian
groups"

KO(A F)-KO(A Ft)-Ko(AG).
(I) (II)

If A is commutative, (I) is an isomorphism of rings.

Proof. Theorem 4.1 is proved by showing that every short exact
sequence of F-projective modules is split exact.

Remark 4.2. Theorem 4.1 implies that our definition of an equi-

variant algebraic K-group includes Ko(AG) as a special case. Even if

A is commutative, A is not commutative in general and Ko(A) has
no canonical ring structure.

Theorem 4.. We have the following isomorphisms of abelian
groups"

KzI(X)-Ke(C(X) ;F)-Ke(C(X) ;Ft)
(I) (II)-- K(O(X) F) - Ko(O(X)G).
(III) (IV)

If --R or C, then (I)-(III) are isomorphisms of commutative rings.

Proof. Since every irreducible representation over / is a direct
summand of the regular representation, the isomorphism (II) follows.
The isomorphisms (I), (III) and (IV) follow rom Theorems 3.1 and 4.1.

Remark 4.4. Since C(X)G is not commutative in general,
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Ko(C,(X)G) has no canonical ring structure even if d=R or C. Hence
Ko(AG) is insufficient as. equivariant algebraic K-theory. This is one
of the reasons why we introduced K(A ;F) nd K(A ;F).
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