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1o Introduction. The purpose of this note is to outline o.ur
recent results on the structure of logarithmic Fano 3-folds. Details
will be published elsewhere. Our proof of the results is based on the
theory of threefolds whose canonical bundles are not numerically
effective, due to S. Mori [6], and the theory o.f open algebraic varie-
ties, due to S. Iitaka [2].

Let X be a non-singular projective variety over an algebraically
closed field k of characteristic zero. Let D--D+D2+ +D be a
divisor with simple normal crossings on X.

A pair (X, D) is called a logarithmic Fano variety if --Kx-D is
an ample divisor, In the case where D=0, X turns out to be a Fano
variety in the usual sense.

A logarithmic Fa.no variety of dimension two may be called a
logarithmic del Pezzo surface.

2. General properties. Let (X, D) be a logarithmic Fno
variety of an arbitrary dimension. By using Norimatsu vanishing
theorem [8, Theorem 1], we have the following

Lemma 2.1. (1) (X)=-co and -l(X)--dim X.
(2) Pic (X)-H(X, Z). In partictlar, p(X)=B2(X).
(3) Pic (X)is torsion free.
The boundary D of a logarithmic Fano variety (X, D) satisfies the

following
Lemrna 2.2. (1) D, Dj=/= for any i and ].
(2) sdimX.
3. Classification of logarithmic del Pezzo surfaces.

Lernm 3.1. Let (S, 1") be a logarithmic del Pezzo surface. Then
the zl-genus [1, Definition 1.4] of S with respect to --Ks-F is as

follows"
(a) If F=0, then zI(S, -Ks)=l.
(b) If F:/:O, then zl(S, -K-F)=0.
Using the results of T. Fujita [1, pp. 107-110] on polarized varie-

ties of z/-genera, zero, we ha,ve the following

Proposition 3.2. Let (S, 1") be a logarithmic del Pezzo surface.
If F :/:0, then (S, F) is one of the following 7 pairs"

( ) SP, F=F where F is a line.
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( ii ) S-P2, F=FI+F2 where each F is a line.
(iii) SP, F=F, where F is a non-singular conic.
(iv) SXn=P((el(e,(-n)), F=FI where F1 is a section with

(r,)= -n.
( v ) S-X, F=F+F where F is a section with (F)=-n a.nd

F is a fiber.
(vi) S-X, F=F where F is a section with (F) 1.
(vii) S-Xo, F=F where F is a section with (F)=2.
4. Extremal rational curves on logarithmic Fano 3.folds. Let

NE(X) be a cone generated by all effective l-cycles in N(X)=A’(X)
(R)zR.

For heir notations and definitions we refer to [6].
By extended Mori’s theory, due to S. Tsunod [9], NE(X) is a

polyhedral cone for a logarithmic Fano variety, i.e.
NE(X)=R+[gl]+ +R+[g]

where each g is a curve such that
O(-Kx-D. g)_<_dim X+ 1.

Lemma 4.1. Let (V, D) be a logarithmic Fano 3-fold. Then
there exists an extremal rational curve satisfying the following
conditions"

(1)
(2) The type of g is either C2, D, D, E or F in a sense of S. Mori

([5] or [7]).
5. Classification of boundaries of logarithmic Fano 3.folds.

Let (V, D) be a logarithmic Fano 3-fold with non-zero boundary D
=D+...+D,. Let F=D], fori:/:l. Since

(--K--D)I=K--F. F
is an ample divisor on D, (D,, F.+... +F,) is a logarithmic del Pezzo
surface. By the same reason, the (D, (D-D)I) are logarithmic del
Pezzo surfaces.

If D consists of only one component, i.e. D=D, then D is a del
Pezzo surface in the usual sense. The configurations of D is deter-
mined by Lemma 4.1 and Proposition 3.2.

6. Classification of logarithmic Fano 3.folds. Fano 3-olds
have been classified by V. A. Iskovskih [4], S. ori and S. Mukai [7].
For a logarithmic Fano -fold (V, D) where D0, we obtain the fol-
lowing result.

Theorem. Let (V, D) be a logarithmic Fano 3-old with D:/:O.
Then (V, D) must be one of 5 types"

( ) V is either P, Q, V, V., V, V or V in the notations of
Iskovskih [4]. Letting H be an ample generator of Pic (V), we have
--KvrH, where r is the index of V. In this case D is a member of
tH], with tr.
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(ii) V is a P-bundle over a non-singular surface which is either
a del Pezzo surface or a Hirzebruch surface Xn. One of the com-
ponents of D is a birational section of this bundle and another com-
ponent, if exists, is formed by fibers.

(iii) V is a quadric fibering over p1 with B2(V)=2. V is embedded
in a P-bundle over PI as an ample divisor. One of the components
of D is a horizontal one of this fibering. Another component, if
exists, is a fiber.

(iv) V is a P2-bundle over P, denoted by X,,a2. D has one or
two horizontal components. Another component, if exists, is a fiber.

(v) V is obtained either from p3 by blowing up non-singular
conic or from another logarithmic Fano 3-fold (V’, D’) by blowing up
some points lying on a boundary D’. V’ is either p3, Q. orXa,,.

The author would like to thank Prof. S. Iitaka for his helpful
suggestions and encouragement.
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