## 71. Classification of Logarithmic Fano 3-Folds

By Hironobu MAEDA

Department of Mathematics, University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., June 14, 1983)

§ 1. Introduction. The purpose of this note is to outline our recent results on the structure of logarithmic Fano 3-folds. Details will be published elsewhere. Our proof of the results is based on the theory of threefolds whose canonical bundles are not numerically effective, due to S. Mori [6], and the theory of open algebraic varieties, due to S. Iitaka [2].

Let X be a non-singular projective variety over an algebraically closed field k of characteristic zero. Let  $D = D_1 + D_2 + \cdots + D_s$  be a divisor with simple normal crossings on X.

A pair (X, D) is called a logarithmic Fano variety if  $-K_x-D$  is an ample divisor. In the case where D=0, X turns out to be a Fano variety in the usual sense.

A logarithmic Fano variety of dimension two may be called a logarithmic del Pezzo surface.

§ 2. General properties. Let (X, D) be a logarithmic Fano variety of an arbitrary dimension. By using Norimatsu vanishing theorem [8, Theorem 1], we have the following

Lemma 2.1. (1)  $\kappa(X) = -\infty \text{ and } \kappa^{-1}(X) = \dim X.$ 

- (2) Pic  $(X) \cong H^2(X, \mathbb{Z})$ . In particular,  $\rho(X) = B_2(X)$ .
- (3) Pic (X) is torsion free.

The boundary D of a logarithmic Fano variety  $(X,\,D)$  satisfies the following

Lemma 2.2. (1)  $D_i \cap D_j \neq \phi$  for any i and j.

- (2)  $s \leq \dim X$ .
- § 3. Classification of logarithmic del Pezzo surfaces.

Lemm 3.1. Let  $(S, \Gamma)$  be a logarithmic del Pezzo surface. Then the  $\Delta$ -genus [1, Definition 1.4] of S with respect to  $-K_S - \Gamma$  is as follows:

- (a) If  $\Gamma = 0$ , then  $\Delta(S, -K_S) = 1$ .
- (b) If  $\Gamma \neq 0$ , then  $\Delta(S, -K_S \Gamma) = 0$ .

Using the results of T. Fujita [1, pp. 107–110] on polarized varieties of  $\Delta$ -genera zero, we have the following

**Proposition 3.2.** Let  $(S, \Gamma)$  be a logarithmic del Pezzo surface. If  $\Gamma \neq 0$ , then  $(S, \Gamma)$  is one of the following 7 pairs:

(i)  $S \cong P^2$ ,  $\Gamma = \Gamma_1$  where  $\Gamma_1$  is a line.

- (ii)  $S \cong P^2$ ,  $\Gamma = \Gamma_1 + \Gamma_2$  where each  $\Gamma_i$  is a line.
- (iii)  $S \cong P^2$ ,  $\Gamma = \Gamma_1$  where  $\Gamma_1$  is a non-singular conic.
- (iv)  $S \cong \Sigma_n = P(\mathcal{O}_{P^1} \oplus \mathcal{O}_{P^1}(-n)), \Gamma = \Gamma_1 \text{ where } \Gamma_1 \text{ is a section with } (\Gamma_1)_S^2 = -n.$
- (v)  $S \cong \Sigma_n$ ,  $\Gamma = \Gamma_1 + \Gamma_2$  where  $\Gamma_1$  is a section with  $(\Gamma_1)_S^2 = -n$  and  $\Gamma_2$  is a fiber.
  - (vi)  $S \cong \Sigma_1$ ,  $\Gamma = \Gamma_1$  where  $\Gamma_1$  is a section with  $(\Gamma_1)_S^2 = 1$ .
  - (vii)  $S \cong \Sigma_0$ ,  $\Gamma = \Gamma_1$  where  $\Gamma_1$  is a section with  $(\Gamma_1)_S^2 = 2$ .
- § 4. Extremal rational curves on logarithmic Fano 3-folds. Let NE(X) be a cone generated by all effective 1-cycles in  $N(X)=A^{1}(X)$   $\otimes_{\mathbb{Z}} R$ .

For their notations and definitions we refer to [6].

By extended Mori's theory, due to S. Tsunoda [9], NE(X) is a polyhedral cone for a logarithmic Fano variety, i.e.

$$NE(X) = \mathbf{R}_{+}[\ell_{1}] + \cdots + \mathbf{R}_{+}[\ell_{r}]$$

where each  $\ell_i$  is a curve such that

$$0 < (-K_X - D \cdot \ell_i) \leq \dim X + 1.$$

**Lemma 4.1.** Let (V, D) be a logarithmic Fano 3-fold. Then there exists an extremal rational curve  $\ell$  satisfying the following conditions:

- (1)  $(D \cdot \ell) > 0$ .
- (2) The type of  $\ell$  is either  $C_2$ ,  $D_2$ ,  $D_3$ ,  $E_2$  or F in a sense of S. Mori ([5] or [7]).
- § 5. Classification of boundaries of logarithmic Fano 3-folds. Let (V, D) be a logarithmic Fano 3-fold with non-zero boundary  $D = D_1 + \cdots + D_s$ . Let  $\Gamma_i = D_i|_{D_i}$  for  $i \neq 1$ . Since

$$(-K_{\scriptscriptstyle V}-D)|_{\scriptscriptstyle D_1}=K_{\scriptscriptstyle D_1}-\Gamma_{\scriptscriptstyle 2}-\cdots-\Gamma_{\scriptscriptstyle s}$$

is an ample divisor on  $D_1$ ,  $(D_1, \Gamma_2 + \cdots + \Gamma_s)$  is a logarithmic del Pezzo surface. By the same reason, the  $(D_j, (D-D_j)|_{D_j})$  are logarithmic del Pezzo surfaces.

If D consists of only one component, i.e.  $D=D_1$ , then D is a del Pezzo surface in the usual sense. The configurations of D is determined by Lemma 4.1 and Proposition 3.2.

§ 6. Classification of logarithmic Fano 3-folds. Fano 3-folds have been classified by V. A. Iskovskih [4], S. Mori and S. Mukai [7]. For a logarithmic Fano 3-fold (V,D) where  $D\neq 0$ , we obtain the following result.

Theorem. Let (V, D) be a logarithmic Fano 3-fold with  $D \neq 0$ . Then (V, D) must be one of 5 types:

(i) V is either  $P^3$ ,  $Q_2$ ,  $V_1$ ,  $V_2$ ,  $V_3$ ,  $V_4$  or  $V_5$  in the notations of Iskovskih [4]. Letting H be an ample generator of Pic (V), we have  $-K_V \sim rH$ , where r is the index of V. In this case D is a member of |tH|, with t < r.

- (ii) V is a P<sup>1</sup>-bundle over a non-singular surface which is either a del Pezzo surface or a Hirzebruch surface  $\Sigma_n$ . One of the components of D is a birational section of this bundle and another component, if exists, is formed by fibers.
- (iii) V is a quadric fibering over  $P^1$  with  $B_2(V)=2$ . V is embedded in a  $P^3$ -bundle over  $P^1$  as an ample divisor. One of the components of D is a horizontal one of this fibering. Another component, if exists, is a fiber.
- (iv) V is a  $P^2$ -bundle over  $P^1$ , denoted by  $\Sigma_{a_1,a_2}$ . D has one or two horizontal components. Another component, if exists, is a fiber.
- (v) V is obtained either from  $P^3$  by blowing up non-singular conic or from another logarithmic Fano 3-fold (V', D') by blowing up some points lying on a boundary D'. V' is either  $P^3$ ,  $Q_2$  or  $\Sigma_{a_1,a_2}$ .

The author would like to thank Prof. S. Iitaka for his helpful suggestions and encouragement.

## References

- [1] T. Fujita: On the structure of polarized varieties with 4-genera zero. J. Fac. Sci. Univ. Tokyo, 22, 103-115 (1975).
- [2] S. Iitaka: Algebraic Geometry, an Introduction to Birational Geometry of Algebraic Varieties. GTM, 76, Springer (1981).
- [3] V. A. Iskovskih: Anticanonical models of three dimensional algebraic varieties. J. Soviet Math., 13, 815-868 (1980).
- [4] —: Three dimensional Fano varieties I, II. Math. USSR Izvestija, 11, 485-527 (1977); ibid., 12, 469-509 (1978).
- [5] M. Miyanishi: Algebraic methods in the theory of algebraic threefolds. Algebraic Varieties and Analytic Varieties. North Holland-Kinokuniya, pp. 69-99 (1983).
- [6] S. Mori: Threefolds whose canonical bundles are not numerically effective. Ann. of Math., 116, 133-176 (1982).
- [7] S. Mori and S. Mukai: On Fano 3-folds with  $B_2 \ge 2$ . Algebraic Varieties and Analytic Varieties. North Holland-Kinokuniya, pp. 101-129 (1983).
- [8] Y. Norimatsu: Kodaira vanishing theorem and Chern classes for ∂-manifolds. Proc. Japan Acad., 54A, 107-108 (1978).
- [9] S. Tsunoda: Open surfaces of logarithmic Kodaira dimension -∞. KAI-SEKI TAYŌTAI Seminar, Univ. of Tokyo (1981) (in Japanese).