70. Fourier Coefficients of Generalized Eisenstein Series of Degree Two

By Shin-ichiro Mizumoto

Department of Mathematics, Tokyo Institute of Technology
(Communicated by Kunihiko Kodaira, m. J. A., June 14, 1983)

Introduction. In [7] we obtained an explicit formula of Fourier coefficients $a(T,[f])$ of the Eisenstein series [f] of degree two attached to an elliptic eigenform f in case where $-|2 T|$ is a fundamental discriminant. In this note we report how the results in [7] extend to the case of general T. This is a résumé of [8]. Theorem 1 below is used in [10], where integrality and congruence properties of $a(T,[f])$ are studied. The author would like to thank Profs. H. Maaß and N. Kurokawa for their suggestions and encouragements.
§ 1. A unified explicit formula of $a(T,[f])$. We follow the notation of [7] throughout this paper. By [7, Remark 2] we limit our attention to the case where semi-integral $T=\left(\begin{array}{cc}t_{1} & t / 2 \\ t / 2 & t_{2}\end{array}\right)$ is primitive, i.e., g.c.d. $\left(t_{1}, t_{2}, t\right)=1$. We put $|2 T|=\Delta(T) 千^{2}$ with a positive integer \dagger and a fundamental discriminant $-\Delta(T)$.

Theorem 1. Let $f \in M_{k}\left(\Gamma_{1}\right)$ be a normalized eigenform where k is a positive integer. Suppose $T>0$ is primitive. Then we have:

$$
\begin{align*}
a(T,[f])= & (-1)^{k / 2} \frac{(k-1)!}{(2 k-2)!}(2 \pi)^{k-1} \Delta(T)^{k-(3 / 2)} \frac{L(k-1, \chi)}{L_{2}(2 k-2, f)} \tag{*}\\
& \cdot \sum_{\substack{s i \dagger \\
s>0}} M\left(\mp s^{-1}\right) \sum_{\substack{t \mid s \\
t>0}} \mu(t) D\left(k-1, f, \vartheta_{T}^{(s / t)}\right) .
\end{align*}
$$

Here $\vartheta_{T}^{(v)}=\sum_{n \geqq 0} b_{T}\left(n v^{2}\right) \mathrm{e}(n z)$ if we write $\vartheta_{T}(z)=\sum_{n \geqq 0} b_{T}(n) \mathrm{e}(n z) ; \chi$ is the Dirichlet character associated with $\boldsymbol{Q}(\sqrt{-\Delta(T)}), \mu$ is the Möbius function, and

$$
M(a)=\sum_{\substack{d, a \\ d>0}} \mu(d) \chi(d) d^{k-2} \sigma_{2 k-3}\left(a d^{-1}\right) \quad \text { where } \quad \sigma_{s}(\alpha)=\sum_{\substack{d, a \\ d>0}} d^{s}
$$

Each L-function is considered as a meromorphic function on C by the analytic continuation. A direct computation shows that (*) may also be written:

$$
\begin{aligned}
a(T,[f])= & (-1)^{k / 2} \frac{(k-1)!}{(2 k-2)!}(2 \pi)^{k-1} \Delta(T)^{k-(3 / 2)} \frac{L(k-1, \chi)}{L_{2}(2 k-2, f)} \\
& \cdot \sum_{\substack{v i \dagger \\
v>0}} D\left(k-1, f, \varphi_{T, v}\right),
\end{aligned}
$$

where

$$
\varphi_{T, v}=\left(\oint v^{-1}\right)^{2 k-3} \prod_{p \mid f v-1, p ; \text { prime }}\left(1-\chi(p) p^{1-k}\right) \vartheta_{T}^{(v)} .
$$

In case $\Phi f \neq 0$ (i.e., $f=G_{k}$), (*) takes the following form :

$$
a\left(T,\left[G_{k}\right]\right)=(-1)^{k / 2} \frac{(k-1)!}{(2 k-2)!} 2(2 \pi)^{k-1} \Delta(T)^{k-(3 / 2)} \frac{L(k-1, \chi)}{\zeta(2 k-2)} M(\mathfrak{\uparrow})
$$

This coincides with the formula of Maaß [6]. Theorem 1 for the case $\Phi f=0$ is also obtained by Böcherer [1] by a different method.

Exactly as in Part I [7], using the results of Shimura [11], Sturm [12], and Zagier [13] (see [7, Remark 2]) we obtain

Theorem 2. Let f be as in Theorem 1. Then for all $T \geqq 0$ we have:
(1) $a(T,[f])^{\sigma}=a\left(T,\left[f^{\circ}\right]\right)$ for all $\sigma \in \operatorname{Aut}(C)$.
(2) $a(T,[f])$ belong to $\boldsymbol{Q}(f)$.

Prof. H. Maaß suggested that the author should study non-vanishing properties of $a(T,[f])$ in December 1980 in connection with Part I [7]. For this problem we have the following

Theorem 3. Let f be as in Theorem 1. Suppose that $T \geqq 0$ (as a binary quadratic form) represents 1 over Z. Then : $a(T,[f]) \neq 0$.
§ 2. Modules in quadratic fields. We sketch here the main tool for the proof of Theorem 1 which is not contained in Part I [7]. For basic properties of modules in quadratic fields (and the correspondence of them with binary quadratic forms), we refer to BorevichShafarevich [2]. Let $T, \Delta(T)$, and \dagger be as above. We put $K=\boldsymbol{Q}(\sqrt{-|2 T|})$ and $K^{\times}=K-\{0\}$. For $0<c \in Z$, let $\mathcal{O}_{K}(c)$ be the order of discriminant $-\Delta(T) c^{2}$ in K, and $\mathscr{M}_{K}(c)$ be the set of all full modules in K with coefficient ring $\mathcal{O}_{K}(c)$. For each order \mathcal{O} in K, put

$$
\mathscr{M}_{K}(c, \mathcal{O})=\left\{M \in \mathscr{M}_{K}(c) \mid M \subset \mathcal{O}\right\} .
$$

For each $m \geqq 1$ we put

$$
\mathscr{M}_{K}(c, \mathcal{O} ; m)=\left\{M \in \mathscr{M}_{K}(c, \mathcal{O}) \mid \mathrm{N}(M)=m\right\}
$$

$\left(\mathrm{N}(M)\right.$ denoting the norm of M, i.e., $\left.M \bar{M}=\mathrm{N}(M) \mathcal{O}_{K}(c)\right)$. The finite abelian group $\mathscr{M}_{K}(c) / K^{\times}$is denoted by $\mathcal{C}_{K}(c)$. For $c^{\prime} \mid c$, let $\nu\left(c, c^{\prime}\right)$: $\mathcal{C}_{K}(c) \rightarrow \mathcal{C}_{K}\left(c^{\prime}\right)$ be the surjective homomorphism induced by $M_{\mapsto} \rightarrow \mathcal{O}_{K}\left(c^{\prime}\right) M$. Let $H\left(-\Delta(T) c^{2}\right)$ be the group of the Γ_{1}-equivalence classes of primitive positive definite binary quadratic forms of discriminant $-\Delta(T) c^{2}$, which is isomorphic to $\mathcal{C}_{K}(c)$. Let T_{1}, \cdots, T_{h} be representatives of all classes of $H\left(-\Delta(T) 千^{2}\right)$. For each character $\psi: H\left(-\Delta(T) f^{2}\right) \rightarrow C^{\times}$, we put $g_{\psi}=w^{-1} \sum_{1 \leq j \leq n} \psi\left(T_{j}\right) \vartheta_{r_{j}}(w$ denoting the number of roots of unity in $\left.\mathcal{O}_{K}(\mathrm{f})\right)$ and $g_{\psi}=\sum_{n \geq 0} t(\psi, n) \mathrm{e}(n z)$. We consider ψ also as a character of $\mathcal{C}_{K}(\mathrm{f})$.

Proposition. Let the notation be as above.
(1) $t(\psi, n)$ is multiplicative with respect to n; and

$$
t(\psi, n)=\sum_{M \in \mathscr{M}_{K}\left(\dot{f}, O_{K}(\mathfrak{i}) ; n\right)} \psi(M) .
$$

(2) Let p be a prime number and p^{α} (with $\left.\alpha \geqq 0\right)$ be the exact power of p dividing \mathfrak{f}. Let $(p)=\mathfrak{p} \overline{\mathfrak{p}}$ (resp. $\left.(p)=\mathfrak{p}^{2} ;(p)=\mathfrak{p}\right)$ be the prime decom-
position of p in $\mathcal{O}_{K}\left(p^{-\alpha} \mathfrak{f}\right)$ if $\chi(p)=1$ (resp. $\left.\chi(p)=0 ; \chi(p)=-1\right)$; the uniqueness of the prime decomposition of p holds in $\mathcal{O}_{K}\left(p^{-\alpha} \mathfrak{f}\right)$ since $p \nmid p^{-\alpha} \mathfrak{f}$. Then there exists a $P \in \mathscr{M}_{K}\left(\mathfrak{f}, \mathcal{O}_{K}\left(p^{-\alpha} \mathfrak{f}\right)\right)$ such that $P \mathcal{O}_{K}\left(p^{-\alpha} \mathfrak{f}\right)$ $=p$. Moreover P can be taken so that $P=\bar{P}$ if $\chi(p) \neq 1$.
(3) Let $\left\{M \in \mathscr{M}_{K}(\mathrm{f}) \mid M \mathcal{O}_{K}\left(p^{-\alpha} \mathrm{f}\right)=\mathcal{O}_{K}\left(p^{-\alpha} \mathrm{f}\right)\right\}=\left\{M_{j} \mid j=1, \cdots, \kappa\right\}$, where $\kappa=p^{\alpha}\left(1-\chi(p) p^{-1}\right)$ or 1 according as $\alpha>0$ or $\alpha=0$. Then, for 2α $\leqq \delta \in Z, \mathcal{M}_{K}\left(\mathfrak{f}, \mathcal{O}_{K}(\mathfrak{f}) ; p^{\delta}\right)$ is equal to: $\left\{p^{\alpha} M_{j} P^{\delta-2 \alpha-t} \bar{P}^{t} \mid 1 \leqq j \leqq \kappa, 0 \leqq t \leqq \delta\right.$ $-2 \alpha\}$ if $\chi(p)=1,\left\{p^{\alpha} M_{j} P^{\delta-2 \alpha} \mid 1 \leqq j \leqq \kappa\right\}$ if $\chi(p)=0,\left\{p^{\alpha} M_{j} P^{(\delta / 2)-\alpha} \mid 1 \leqq j \leqq \kappa\right\}$ if $\chi(p)=-1$ and δ even, ϕ (the empty set) if $\chi(p)=-1$ and δ odd.
(4) Suppose $\delta \in Z, 0 \leqq \delta \leqq 2 \alpha$. Then $\mathcal{M}_{K}\left(\mathfrak{f}, \mathcal{O}_{K}(\mathfrak{f}) ; p^{\delta}\right)=\left\{p^{\delta / 2} M \mid M\right.$ $\in \mathscr{M}_{K}(\mathfrak{f})$ such that $\left.M \mathcal{O}_{K}\left(\mathfrak{f} p^{-\delta / 2}\right)=\mathcal{O}_{K}\left(\mathfrak{f} p^{\delta / 2}\right)\right\}$ for δ even $; \mathscr{M}_{K}\left(\mathfrak{f}, \mathcal{O}_{K}(\mathfrak{f}) ; p^{\delta}\right)$ $=\phi$ for δ odd. Moreover, for $0 \leqq \delta \leqq 2 \alpha$ and δ even, we have a bijection $\mathscr{M}_{K}\left(\mathfrak{f}, \mathcal{O}_{K}(\mathfrak{f}) ; p^{\delta}\right) \leftrightarrow\left(\mathcal{O}_{K}\left(\mathfrak{f} p^{-\delta / 2}\right)^{\times} / \mathcal{O}_{K}(\mathfrak{f})^{\times}\right) \times\left(\operatorname{Ker}\left(\nu\left(\mathfrak{f}, \uparrow p^{-\delta / 2}\right)\right)\right.$
via $p^{\delta / 2} \zeta M \leftrightarrow\left(\zeta \mathcal{O}_{K}(\mathrm{f})^{\times},[M]\right)$. (Here $\zeta \in \mathcal{O}_{K}\left(f p^{-\delta / 2}\right)^{\times}$and $[M]$ is the class of $\mathcal{C}_{K}(\subsetneq)$ containing M. For a ring R with 1 , we denote by R^{\times}the group of units.)

Remark. (i) Proposition determines all the values of $t(\psi, n)$ explicitly.
(ii) By Proposition, for example, we know that the "twisted" Epstein zeta function $L(s, \psi)=\sum_{n \geqq 1} t(\psi, n) n^{-s}$ has an Euler-product expression over all primes and each p-factor is a rational function of p^{-s} with coefficients lying in $\boldsymbol{Q}\left(e^{2 \pi \sqrt{-1} / h}\right)$.

In case $\Phi f \neq 0$, i.e. $f=G_{k}$, by Proposition we have:
Lemma. Put

$$
V(\psi)=\sum_{\substack{s i f \\ s>0}} M\left(f s^{-1}\right) \sum_{\substack{t / s \\ t>0}} \mu(t) D\left(k-1, G_{k}, g_{\psi}^{(s / t)}\right) .
$$

Then: $V(\psi)=0$ if ψ is non-trivial, and

$$
V(\psi)=M(\uparrow) \zeta(k-1) \zeta_{K}(0) \uparrow \prod_{p \mid f}\left(1-\chi(p) p^{-1}\right)
$$

if ψ is trivial. Here $\zeta_{K}(s)$ is the Dedekind zeta function of K.
From this lemma the uniformity (for the both cases $\Phi f \neq 0$ and $\Phi f=0$) of the formula (*) follows. The proof in the case $\Phi f=0$ is based on the above Proposition and a multiplicative property of "sums of Kloosterman sums".

We note that $a(T,[f])$ have the unified expression for both cases $\Phi f \neq 0$ and $\Phi f=0$ for all T by Theorem 1 above and Part I [7, Remark 2]. This suggests that the higher degree cases are in similar situations.

References

[1] S. Böcherer: Über gewisse Siegelsche Modulformen zweiten Grades. Math. Ann., 261, 23-41 (1982).
[2] Z. I. Borevich and I. R. Shafarevich: Number Theory. Academic Press (1966).
[3] N. Kurokawa: On Eisenstein series for Siegel modular groups. Proc. Japan Acad., 57A, 51-55 (1981).
[4] ——: ditto. II. ibid., 57A, 315-320 (1981).
[5] N. Kurokawa and S. Mizumoto: On Eisenstein series of degree two. ibid., 57A, 134-139 (1981).
[6] H. Maaß: Die Fourierkoeffizienten der Eisensteinreihen zweiten Grades. Mat.-Fys. Medd. Danske Vid. Selsk., 34, nr. 7 (1964).
[7] S. Mizumoto: Fourier coefficients of generalized Eisenstein series of degree two. I. Invent. math., 65, 115-135 (1981).
[8] --: ditto. II. Kodai Math. J. (to appear).
[9] --: On Eisenstein series of degree two for Hilbert-Siegel modular groups. Proc. Japan Acad., 58A, 33-36 (1982).
[10j - : Integrality of certain algebraic values attached to modular forms. ibid., 59A, 33-36 (1983).
[11] G. Shimura: The special values of the zeta functions associated with cusp forms. Comm. Pure Appl. Math., 29, 783-804 (1976).
[12] J. Sturm: Special values of zeta functions and Eisenstein series of half integral weight. Amer. J. Math., 102, 219-240 (1980).
[13] D. Zagier: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. Lect. Notes in Math., vol. 627, Springer-Verlag, pp. 105-169 (1977).

