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1o Introduction. In the previous paper [1] we extended the so-
called Montel-Bieberbach’s theorem on values omitted by meromorphic
and univalent functions in [zll, to the case of circumferentially
mean univalence (defined hereafter). In the next paper [2] we an-
nounced the results on meromorphic and circumferentially mean
univalent functions in an annulus which mean an extension of the
author’s results [1]. In this paper, we shall first extend GrStzsch’s
theorem ([3] or [5]) to the case of circumferentially mean univalence
and then prov.e the author’s results [2] in the precise and intrinsic
form.

We shall define circumferentially mean univalent functions in a
domain D. Let f(z) be regular or meromorphic in D and n(R,
denote the number of roots of the equation f(z)-w--Re. We define
p(R) as follows.

1 n(R )dq (0<R< oo).P(R) --zIf p(R)<_l (0_<R<oo), f(z) is called "circumferentially mean uni-
valent".

2. We shall first state the following two lemmas.
Lemma 1. Let w=f() be single-valued, regular in

and [f(z)l_l there. Moreover let the circle Iz]=l be univalently
mpped onto the circle w]=l. If we denote the harmonic measure

of the circle [z]=l with respect to the annulus l[zlR by o(z) and
do the harmonic measure of Iwl-1 with respect to the image domain
Dr under w=f(z) by w(w), then we have
( 1 I (o(z))

_
I(o(w)),

where I((o(z)) or I((o(w)) denote the Dirichlet integral of o(z) or
respectively.

Proof. We may consider Landau-Osserman’s results [6] by
means of exhaustion method.

Lemma 2. Let f(z) satisfy the same conditions as in Lemma 1
and D, or o(w) denote the same notation in Lemma 1 respectively.

If D denotes the circularly symmetrized domain of D with respect to
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the positive real axis and o(w) does the harmonic measure of the
vircle [w]--1 with respect to D, then we have
2 ) I (o(w)) >_I(o(w)).

Proof. We may consider quite similarly the method of Hay-
roans’ proof of PSlya-SzegS’s theorem on circularly symmetrized
condenser ([4], [7]).

Now we shall extend GrStzsch’s theorem which is an extension
,o one-quarter theorem.

Theorem 1. Let w--f(z) be single-valued, regular, and circum-
ferentially mean univalent and satisfy the inequality If(z)l::>l in
l<_[z[R. If the circle [zl=l is mapped onto the circle [wl=l, then
the image domain D under w=f(z) always covers the annulus l<_lw
<P* (P*_>P)where P is. determined by the relation (P)=R with
respect to Gr6tzsch extremal domain ([3] or [5]). P*=P occurs when
f(z) maps univalently the annulus l<]z]<R onto Gr6tzsch extremal
domain.

Proof. We consider g(z)= 1If(z). g(z) is single-valued, regular
and circumferentially mean univalent in l<_lz]<R and Ig(z)[_<l there.
Moreover we see the univalency of g(z) on the circle ]zl= 1 by means
o the definition o circumferentially mean univalence. Here let Dq
be the image domain of the annulus l<_lz]<R under w=g(z) and D*
be the circularly symmetrized domain of D with respect to the posi-
tive real axis. Then the complementary set E, o D, with respect to
the unit circle Iw]<_l, is transformed to the circularly symmetrized
set Eq*. Now we prove that the intersection S of E* and the positive
real axis consists of only one interval [o, Q] where we put Q=Maxlw
(w e E). Suppose r e S where orQ. Then the circle ]wl=r is
wholly contained in Dq. Moreover we see by means of the circum-
ferentially mean univalence of g(z) that the circle Iw[=r is the univa-
lent image of a Jordan curve C in the annulus 1

(i) If the domain enclosed by C is wholly contained in the
annulus l[z]R, we see by means of Darboux’s theorem that the
circle [wl<_r is wholly contained in D,. This is absurd.

(ii) If C encloses the circle ]zl= 1, we see also by means of the
slight extension of Darboux’s theorem that the annulus r<lw]<l cor-
responds univalently to the ring domain enclosed by the circle [z I=1
and C. This is also absurd.

Now let Do be the unit circle [w]<_l with the slit [o, Q]. Then
DoD*. Here let M(D*) or M(Do) denote Modul of D* or Do respec-
tively. Then by means of Lemmas 1 and 2, we have the following
relation
( 3 ) logRM(D*)M(Do),
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because Dirichlet integral of harmonic measure equals 2 (reciprocal
of Modul of ring domain).

On the other hand let D be the circularly symmetrized domain
of D with respect to the positive real axis and Dg be the outer circle
Iwl_l with the slit [l/Q, ]. Then the intersection of the comple-
mentary set E of D with respect to the outer circle ]w] 1 and the
positive real axis is the slit [l/Q, c] and Modul of D equals Modul
of Do. Therefore P_P*(1/Q=P*). This completes the proof.

As an application of Theorem 1 we have the following which is
an extension of the author’s results [1].

Theorem 2. Let w-f(z) be meromorphic and circumferentially
mean univalent in the annulus l_[z]R and satisfy the inequality
[f(z)]_l there. Moreover let the circle [z]=l be mapped onto the
circle ]w[=l. If E denotes the complementary set of the image
domain D under w--f(z) with respect to the circle Iw]l and we put
a= Min [w [, fl Max [w where w e E, then Modul M(a, ) of the unit
circle Iw]l with the slit [, ] satisfies the following inequality.
4 ) M(a, )

_
log R.

Accordingly we have the following inequality.

( 5 > P+I, that is, fl

_
aP- 1

P+fl P-a
where P is defined in Theorem 1.

Proof. By means of considering w=l/f(z), the relation (4) can
be derived quite similarly as in the proof of Theorem 1. Next by the
linear transformation (1-w)/(w-), the circle [will with the slit
[a, ] is transformed to the circle [wl 1 with the slit [1-a/a-, c].
Hence by means of Theorem 1 and (4) we have

(6) p_ 1--a.
From this (5) is directly derived.

Remark. The results in Theorems 1 and 2 can be extended to
the case of circumferentially mean p valence.
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