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On the Isomonodromic Deformation of a Linear
Ordinary Differential Equation o

the Third Order

By Hironobu KIMURA
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1. Introduction. Consider a third order linear ordinary differ-
ential equation of Fuchsian type

(1.1) d3Y
dx

dy +p dy+P dx -d +py o

with the following Riemannian scheme"

(1.2)

and we suppose that the singularities x=2 (]=1, 2, 3, 4) are non-
logarithmic ones and the characteristic exponents at each singular
point do not differ by integer.

The purpose of this paper is to derive a system of isomonodromic
deformation equations of (1.1) regarding t as deformation parameter.

2. Hamiltonian system attached to (1.1).
p(x) (]= 1, 2, 3) of the equation (1.1) are given by

bp(x)=a+ a + t-+ c
x x-1 -- -- x----’
ap(x) =--+ (x_1)
q

x(x-1)
ap(x)=+ (x-- 1)

where

The coefficients

T(x)=x(x--1)(x-t)
and a, bt, c (i=1, 2, 3 k=l, 2, 3, 4; A=0, 1, c) are constants de-
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termined by the characteristic exponents.
We see from the assumption that x=2 are non-logarithmic

singularities that ], , 5 (z/--0, 1, t; ]= 1, 2, 3, 4) and H are deter-
mined as rational functions o t, 2,/ (k-1, 2, 3, 4). Using H thus
determined, we obtain the following theorem.

Theorem 1. The isomonodromic deformation of (1.1) is governed
by the Hamiltonian system

d2 OH

H(ao, a, fl, r) dt 3Z (]= 1, 2, 3, 4)

with the Hamiltonian
H Res p.(x)

(1.1) of the form
(3.D
Putting in (3.1)

y=(x)z.

O(x) x(x 1)’(x-- t) (x 2),

we obtain by this transformation the linear equation

(3.2) d3z + ql
d2z

q2
dZ + q3z O

dx--W- dx + dx
having the Riemannian scheme (1.2) with

ao====O (k= 1, 2, 3, 4).
A simple computation shows that the coefficients q(x) (i-l, 2, 3) of
(3.2) are related to those of (1.1) as

q(x) p(x) + 3q’q-1,
(3.3) q.(x) =p(x)+ [2p(x)’+3"]-,

q(x) p(x) + [p(x)’+pl(x)"+’"]-.
Set

K=-Res q(x), v=Res q2(x),

then the relation (3.3) reads
(3.4) K=H-Res(2p(x)’+3")-,

X=$

(3.5) v=/+Res (2pl(x)’+3")-.
k

Then we ca.n prove
Theorem 2. The change of variables (3.4), (3.5)"

and the canonical variables conjugate to
p=Res p(x) (]= 1, 2, 3, 4).

The explicit form of Hamiltonin function H for the system
H(0, 0, 0, 0) is given in the last section.

3. Canonical transformation. Consider a transformation of
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(2,/, H) ; (2, ,, K)
defines a canonical transformation, which takes the Hamiltonian
system H(ao, , , ) to H(O, O, O, 0).

Remark 1. The transformation in the above theorem is in-
vertible. Hence the Hamiltonian systems H(a0, a,,/, ’) are trans-
ormed to each other by the canonical transformation.

Remark 2. The transformation (3.1) with

takes (1.1) into the linear equation (3.2) with q(x)=O. The linear
equation of this form is called of SL-type.

4. Hamihonian. We will give the explicit form of the Hamil-
tonian function for the system H(0, 0, 0, 0). Suppose that o---
--T--O for the equation (1.1). Then the condition that x-2 (]--1,
2, 3, 4) are non-logarithmic singular points reads as
(4.1) = --2(/+E)

1(4.2) j= j(/+), (]= 1, 2, 3, 4)

(4.3) (+Fj)+2G= 0,
where E, F and G are constant terms in the Laurent series ex-
pansion of p(x), p(x) and p(x) at x= respectively.

Solving (4.3) with respect to H, we arrive at the
Proposition. The Hamiltonian function H for the system H(O,

O, O, O) is given by

[t(t- 1)22 (+E)(-- A’(2D = A’(2)
where

and

A (x) l-[ (x 2).

Remark 3. #, (]=1, 2, 3, 4) are determined by (4.1), (4.2) as
rational functions of 2,/ (k= 1, 2, 3, 4) and W (A=0, 1, t) by (4.3).
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