95. On Approximation by Integral Müntz Polynomials

By Takeshi Kano
Department of Mathematics, Okayama University
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1983)

In 1914 there appeared two independent articles of importance on Weierstrass' approximation theorem. Kakeya [6] considered approximation of a given continuous function $f(x)$ on [a, b] by polynomials with integral coefficients, while Müntz [7] studied the condition on the sequence $\Lambda=\left\{\lambda_{n}\right\} \quad\left(0=\lambda_{0}<\lambda_{1}<\cdots<\lambda_{n}\right)$ to approximate $f(x)$ by the "Müntz polynomials"

$$
\begin{equation*}
p(x)=\sum_{k=0}^{n} a_{k} x^{\lambda_{k}}, \tag{1}
\end{equation*}
$$

where the coefficients a_{k} 's are real.
Kakeya proved that on $[0,1] f(x)$ is uniformly approximated by integral polynomials iff $f(0)$ and $f(1)$ are both integers, and showed that if $\alpha \geqq 4, f(x)$ cannot be uniformly approximated on $[0, \alpha]$ by integral polynomials unless it is such a polynomial.

The necessary and sufficient condition found by Müntz was

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}=+\infty, \tag{2}
\end{equation*}
$$

which is now usually called "Müntz condition". Their aspects and results have been both unified and extended recently (cf. Ferguson [2] for basic results). One of the fundamental problems is to find conditions to approximate $f(x)$ on $[0, \alpha]$ by integral Müntz polynomials, i.e. $p(x)$ with integer coefficients a_{k} 's.

If we denote by $C_{0}[0, \alpha]$ the set of all continuous functions $f(x)$ on $[0, \alpha]$ such that $f(m)$ is integer for any integer m in $[0, \alpha]$, then Ferguson and Golitschek [3] proved that when Λ is a sequence of positive integers and $\alpha \leqq 1$, (2) is the necessary and sufficient condition for $f \in C_{0}[0, \alpha]$ being uniformly approximated by integral Müntz polynomials ([2], Chap. 8). Later Golitschek [4] has succeeded in proving this true for any $\lambda_{n} \uparrow \infty$. Also Ferguson [1] showed, among other things, that the assertion becomes false if $\alpha>1$.

Now define for the increasing sequence Λ of positive numbers,

$$
\underline{D}(\Lambda)=\liminf _{N \rightarrow \infty} \frac{N}{\lambda_{N}}, \quad \bar{D}(\Lambda)=\limsup _{N \rightarrow \infty} \frac{N}{\lambda_{N}},
$$

which are called respectively the lower and the upper asymptotic densities of Λ. If $\underline{D}(\Lambda)=\bar{D}(\Lambda)<\infty$, we denote it by

$$
D(\Lambda)=\lim _{N \rightarrow \infty} \frac{N}{\lambda_{N}}
$$

and call it the asymptotic density of Λ.
Then Ferguson's result mentioned above may be stated as follows.
Theorem A. If Λ is a sequence of positive numbers such that there exists a positive constant c satisfying

$$
\begin{equation*}
\lambda_{k+1}-\lambda_{k} \geqq c, \quad(k=1,2, \cdots) \tag{3}
\end{equation*}
$$

and $D(\Lambda)=0$, then $f \in C[0, \alpha]$ with $\alpha>1$ cannot be uniformly approximated by integral Müntz polynomials except when f itself is such a polynomial.

He derived this theorem from
Theorem B. Let Λ be a sequence of positive numbers and define

$$
M_{n}[0, \alpha]=\inf _{a_{k}} \sup _{0 \leq x \leq \alpha}\left|a_{0}+\sum_{k=1}^{n-1} a_{k} x^{\lambda_{k}}+x^{\lambda_{n}}\right|
$$

Then if

$$
\limsup _{n \rightarrow \infty} M_{n}[0, \alpha]>0,
$$

$f \in C[0, \alpha]$ cannot be uniformly approximated by integral Müntz polynomials $p(x)$ except the trivial case as mentioned above.

We shall show in this paper that his argument in fact yields the following results.

Theorem 1. We may replace in Theorem A the asymptotic density by the lower asymptotic density, i.e. it is sufficient to assume $\underline{D}(\Lambda)=0$ there.

Corollary. If Λ is an infinite primitive sequence of increasing natural numbers, then $f \in C[0, \alpha]$ with $\alpha>1$ cannot be uniformly approximated by integral Müntz polynomials except the trivial case.

The primitive sequence Λ is such that no element of Λ divides any other, and $\underline{D}(\Lambda)=0$ (cf. [5] Chap. V). Ferguson's result ([1] Corollary 3) concerns the special case $\Lambda=P$, the set of all prime numbers.

Before proving Theorem 1, we give the following theorem from which Theorem 1 is easily derived.

Theorem 2. Let Λ be the same as in Theorem 1. Then

$$
\lim _{n \rightarrow \infty}\left(M_{n}[0,1]\right)^{1 / \lambda_{n}}=1
$$

Proof. First we observe that (3) implies

$$
\lambda_{n}-\lambda_{k} \geqq c(n-k), \quad(1 \leqq k \leqq n-1)
$$

Next we may suppose $0<c \leqq 2$ and set for some $d>2 / c(\geqq 1) \mu_{n}$ $=d \lambda_{n}$, so that

$$
\mu_{n+1}-\mu_{n}=d\left(\lambda_{n+1}-\lambda_{n}\right) \geqq c d=c^{\prime}>2
$$

Since $M_{n}[0,1] \leqq 1$ for all n, it suffices to prove $\lim _{n \rightarrow \infty} \sup M_{n}^{1 / \lambda_{n}} \geqq 1$. Then we have (cf. [1] Theorem 2)

$$
\left(M_{n}[0,1]\right)^{1 / \lambda_{n}} \geqq\left(\frac{\lambda_{n}}{\lambda_{n}+1} \cdot \frac{1}{\sqrt{2 \lambda_{n}+1}} \cdot \prod_{k=1}^{n-1} \frac{\lambda_{n}-\lambda_{k}}{\lambda_{n}+\lambda_{k}+1}\right)^{1 / \lambda_{n}}
$$

$$
\begin{aligned}
& =\left(\frac{\mu_{n}}{\mu_{n}+d} \cdot \frac{\sqrt{d}}{\sqrt{2} \mu_{n}+d} \cdot \prod_{k=1}^{n-1} \frac{\mu_{n}-\mu_{k}}{\mu_{n}+\mu_{k}+d}\right)^{d / \mu_{n}} \\
& \geqq\left(\frac{\mu_{n}}{\mu_{n}+d} \cdot \frac{1}{\sqrt{2} \mu_{n}+1}\right)^{d / \mu_{n}} \cdot\left(\prod_{k=1}^{n-1} \frac{c^{\prime}(n-k)}{2 \mu_{n}+d}\right)^{d / \mu_{n}}
\end{aligned}
$$

Since

$$
\lim _{n \rightarrow \infty}\left(\frac{\mu_{n}}{\mu_{n}+d} \cdot \frac{1}{\sqrt{ } 2 \mu_{n}+1}\right)^{1 / \mu_{n}}=1
$$

we have

$$
\begin{aligned}
\underset{n \rightarrow \infty}{\lim \sup } M_{n}^{1 / \lambda_{n}} & \geqq \limsup _{n \rightarrow \infty}\left(\prod_{k=1}^{n-1} \frac{c^{\prime}(n-k)}{2 \mu_{n}+d}\right)^{d / \mu_{n}} \\
& \geqq \limsup _{n \rightarrow \infty}\left(\frac{c^{\prime}}{2 \mu_{n}+d}\right)^{d(n-1) / \mu_{n}} \cdot\left\{\prod_{k=1}^{n-1}(n-k)\right\}^{d / \mu_{n}} \\
& \geqq \limsup _{n \rightarrow \infty}\left\{\mu_{n}^{-n+1}(n-1)!\right\}^{d / \mu_{n}} .
\end{aligned}
$$

Hence by Stirling's formula,

$$
\begin{aligned}
\lim \sup _{n \rightarrow \infty} M_{n}^{1 / \lambda_{n}} & \geqq \limsup _{n \rightarrow \infty}\left\{\mu_{n}^{-n+1}(\sqrt{2 \pi}-\varepsilon) n^{n-1 / 2} e^{-n}\right\}^{d / \mu_{n}} \\
& \geqq \limsup _{n \rightarrow \infty}\left\{\left(\frac{n}{\mu_{n}}\right)^{(n-1) / \mu_{n}} \cdot e^{-n / \mu_{n}}\right\}^{d} \\
& \geqq \limsup _{n \rightarrow \infty}\left\{\left(\frac{n}{e \mu_{n}}\right)^{n / \mu_{n}}\right\}^{d e(n-1) / n} \cdot e^{-d / \mu_{n}}=1,
\end{aligned}
$$

for $\liminf \inf _{x \rightarrow+} x=0$ implies $\lim \sup _{x \rightarrow 0+} x^{x}=1$.
Proof of Theorem 1. It follows from the transformation $x \rightarrow x / \alpha$ that

$$
M_{n}[0, \alpha]=\alpha^{\lambda_{n}} M_{n}[0,1] .
$$

By the preceding theorem, there exist infinitely many n such that

$$
\left(M_{n}[0,1]\right)^{1 / \lambda_{n}}>1-\varepsilon .
$$

Thus for infinitely many n we obtain if $\varepsilon<1-1 / \alpha$,

$$
M_{n}[0, \alpha]>\{\alpha(1-\varepsilon)\}^{\lambda_{n}}>1,
$$

which proves Theorem 1 according to Theorem B.
Let $\alpha_{0}=\alpha_{0}(\Lambda)$ be the infimum of α such that no element of $C[0, \alpha]$ can be uniformly approximated by integral Müntz polynomials except the trivial case. For example, if $\Lambda=c N(c>0), \alpha_{0}=4$ (cf. [1] Theorem 3). We shall now prove the following

Theorem 3. If Λ is a sequence of positive number satisfying (3) and $\bar{D}(\Lambda)=\delta, 0<\delta<\infty$, then we have

$$
\alpha_{0} \leqq\left(\frac{2 e}{c \delta}\right)^{1 / c} .
$$

It is worth noting that every integer sequence Λ with $\bar{D}(\Lambda)>0$ contains arbitrarily long arithmetic progressions [8]. We remark that (3) implies $c \delta \leqq 1$ and hence

$$
\left(\frac{2 e}{c \delta}\right)^{1 / c} \geqq(2 e)^{1 / e}>4^{1 / c}
$$

Proof of Theorem 3. As shown in the proof of Theorem 2, we have

$$
\begin{aligned}
M_{n}[0,1] & \geqq \frac{\lambda_{n}}{\lambda_{n}+1} \cdot \frac{1}{\sqrt{2 \lambda_{n}+1}} \cdot \prod_{k=1}^{n-1} \frac{\lambda_{n}-\lambda_{k}}{\lambda_{n}+\lambda_{k}+1} \\
& \geqq \frac{\lambda_{n}}{\lambda_{n}+1} \cdot\left(2 \lambda_{n}+1\right)^{-n+1 / 2} \cdot c^{n-1} \cdot(n-1)!.
\end{aligned}
$$

Thus by Stirling's formula,

$$
\limsup _{n \rightarrow \infty} M_{n}^{1 / n} \geqq \limsup _{n \rightarrow \infty} \frac{c}{e}\left(\frac{n}{2 \lambda_{n}+1}\right)^{1-1 / 2 n}=\frac{c \delta}{2 e} .
$$

Therefore for infinitely many n we have

$$
M_{n}>\left(\frac{c \delta}{2 e}-\varepsilon\right)^{n} .
$$

Hence, on account of the fact $\lambda_{n} \geqq c n+\left(\lambda_{1}-c\right)$,

$$
M_{n}[0, \alpha]>\alpha^{\alpha_{n}}\left(\frac{c \delta}{2 e}-\varepsilon\right)^{n} \geqq\left\{\alpha^{c}\left(\frac{c \delta}{2 e}-\varepsilon\right)\right\}^{n} \cdot \alpha^{\left(\alpha_{1}-c\right)} .
$$

Accordingly, if $\alpha^{c}>2 e / c \delta$, we obtain

$$
\lim _{n \rightarrow \infty} \sup M_{n}[0, \alpha]>0,
$$

which proves Theorem 3 by virtue of Theorem B.

References

[1] Ferguson, L. B. O.: Approximation by integral Müntz polynomials. Proc. Fourier Analysis and Approximation Theory. North-Holland, vol. 1, pp. 359-370 (1978).
[2] -: Approximation by Polynomials with Integral Coefficients. Amer. Math. Soc. Math. Surveys, no. 17 (1980).
[3] Ferguson, L. B. O., and Golitschek, M. von: Müntz-Szász theorem with integral coefficients, II. Trans. Amer. Math. Soc., 213, 115-126 (1975).
[4] Golitschek, M. von: Approximation durch Polynome mit ganzzahligen Koeffizienten. Approximation Theory. Proc. International Colloq., Lect. Notes in Math., Springer, vol. 556, pp. 201-212 (1976).
[5] Halberstam, H., and Roth, K. F.: Sequences, vol. I. Oxford (1966).
[6] Kakeya, S.: On approximate polynomials. Tôhoku Math. J., 6, 182-186 (1914).
[7] Müntz, Ch. H.: Über den Approximationssatz von Weierstrass. H. A. Schwartz Festschrift, Math. Abhandlungen, Berlin, pp. 303-312 (1914).
[8] Szemerédi, E.: On sets of integers containing k elements in arithmetic progression. Acta Arith., 27, 199-245 (1975).

