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1o Introduction. In the recent works of Crandall and Pazy [2],
Evans [3], Kobayashi et al. [4], and Pavel [7] has been studied the
existence of an evolution operator associated with the time-dependent
evolution equation

( 1 ) du(t)/dt e A(t)u(t), s< t T, u(s) x,
where T0, s e [0, T), x e D(A(s)), and {A(t) O<_t<:T} is a family of
(possibly multi-valued) nonlinear operators in a Banach space. The
purpose of this note is to discuss the convergence of nonlinear evo-
lution operators under more general conditions than those treated in
[3], [4] and [7]. Our result gives an extension to the time-dependent
case (1) o the convergence results for nonlinear semigroups due to
Brezis and Pazy [1], Miyadera and Kobayashi [6] and Watanabe [8].

2. Theorem. Let X be a Banach space with norm I. [. Let
={A(t);Ot<_T} be a family of nonlinear operators in X. We say
that JZ is of class G(o, p, g)if satisfies the three conditions listed
below"

( I ) There exist e (-c, c), a ncndecreasing right-continuous
function p" [0, T]-[0, c) with p(0)=0, and g e L(0, T X) such that

(2) (+-z)lx-ul<ix-u-vl+Ix-u+vl
+2/(p(I t- s])+lg(t)- g(s)I)

for any 0,/0, t, s e [0, T], [x, y] e A(t), and [u, v]e A(s).
( II ) If t, e [0, T], x, e D(A(t.)), t, t and x,-.x, then x e D(A(t)).
(III) For each s e [0, T) and x e D(A(s)), there exist sequences

{t}, {x} and {} such that s t t t(,) <: T, x e D(A(t)),

x x_____ e A(t)x+, 1 <: t<N(n),
t--t_

N(n)

lim max (t--t_)=0, lim , (t--t_)lsl=0,

lim x x, lim tv(n) T,

lira I()-(t) d= O.
k=l Jt_

If is of class G(, p, g) then it is verified by applying the argu-
ment of [4] that there exists an evolution operator cU-{U(t,s);
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O<=s<_t<_T} such that U(t, s) maps D(A(s)) into D(A(t)) for
and
(3) [U(t,s)x-zl-lx-zl

+ o(!-rI+ ( (
for every e [0, ), t e [0, T], e [0, T], e D(A()) and [, w] e A(r),
where [, ]. lim,, (Iz + l-Izl)/ for z, e X. he evolugion

oerator is constructed through the convergence o solutions
discrete sehemes mentioned in endition (III), and hence or
and z e D(A()) the function (t)U(t,) gives a weak solution o (1)
in the sense of []. In this regard we say that is an evolution
operator associated with .

Let {A} be a sequence of operators in X and define the limit
operator Lim A of the sequence {A} by the following" [x, y] e Lim A
if and only if there is a sequence {[x, y]} such that [x, y] e A and
lim (]x--x+y--y)=O.

Theorem. Let {A(t)} be of class G(w, p, g) and let {A(t)} of class
G(, p, g) for ml. Let {U(t, s)} and {U(t, s)} be evolution opera.
tors associated with [A(t)} and {A(t)}, respectively. Suppose that
Lim A(t)A(t) for every t e[0, T], , p(t)p(t) for every
t e [, T], gg in L(O, T ;X) and g(t)g(t) for every t e [0, T]. Then
for every s e [0, T), x e D(A(s)) and x e D(A(s)) with xx, we have
( 4 ) lira U(t, s)x= U(t, s)x
for stT and the convergence is uniform on [s, T] with respect to t.

3. Proof of Theorem. Lemma 1. i) Let Osto...t
T and set 2=t-t_. Then

(5) t-t-Is-tl ([-t_]-]-t])d (stT, lkn).

ii) (See [8].) For every h, , and with Oh3, h,

(6) + e/[(-+h)+]/de/[(t-)+t]/(tO).

Let 0 be fixed,. Then there exist g e C([O, T];X) and L.0
such that [’ g(t)-g,(t),dt< and

( 7 ) p([t--s)+[g.(t)-g,(s)]L[t-s+, (t, s e [, T]).
The core of the proof of our theorem is the following.
Lemma 2. Let s e [, T), x e D(A(s)) and let {x} be a sequence

in X such that x e D(A(s)) and xx. Then for Xo e X, Stot. tT, [x, y] e A(t) (lkN), r e [s, T), [u, v] e A(r), t e Is, T]
and 2=t--t_ with 2 e (0, 1/) (lkN), we have
(8) lira sup U(t, s)x- U(t, s)x
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+2 I-[; (1-)-’[{Xo-Ul+L, lto-rl+e]
+2 I-[ (1- 2)-[e(-)((t- s- t+ toY+ 2(t- s))/

X ([ v I+L+ g(r)-- g(r)])]
+2= (1--)-1[= (] [g(t)--g(t)]+[X--X_--2y])]

where 2 max and max {1, }.
Proof. For each i e {1, 2, ..., N} choose a sequence {[x, y]} such

that [x,y3]eA(t) and ]x3-x]+[y3-y[O as m. Moreover
let {[u, v]} be any sequence such that [u, v] e A(r) and ]u- u
+]v-vO as m. For simplicity in notation we use the follow-
ing functions"
p(t)=U(t,s)x-x+L]t-t[+, k=0,1,2, ...,
p(t)=[U(t,s)x-x]+L,t-t+, m=1,2, ..., k=0,1,2,...,
a=[x-x_-y[+2g(t)-g(t)[, k=l, 2, ...,

and define q(t) by
q(t) e(t-’)([ x-- u]+L Is- r]+ e)

+ (1-- )-[e(-)((t- s-E=)+ (t- s))’/b]

for k=l, 2, 3, ..., and t e [s, T]. We shall estimate p(t) and p(t) by
induction on k. For the values p(t) we demonstrate that
( 9 ) p(t) q(t)
for kl. First we have

po(t) e(t- ) (] x uI+Ls rI+)+ ([ Xo uI+L It0 r I+)

On the other hand, the inequalities (3), (5) and (7) together imply that

(o) (tN()- (g+ _()d

Nrom this it follows that

(11) ex [(t-)](t)N()+ ex [(-)]_()d

+ (1 )-[exp [(t-)] 1]a

+.[: exp [a(--s)] g,()--g()] d.

On the other hand, condition (I) implies that
(12) p(s)x-u]+L]s-r+

+= (1-)-[] x0 u]+Lto-r]++E= a+(t-to)b].
Combining (11) with (12), we have
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(13) exp [(t-- s)]p(t)

j

+l-I; (1- ,) [[Xo-U]+L, rl++(t to)b
__

a+exp [a(t-s)]a]

+J: exp [a(--s)] [g,()--g() d.

Now suppose that (9) holds for k-1. Replacing p_(t) on the
right side of (13)with q_,(t)and then applying (6) with h= and==, we infer that p(t) is bounded by q(t). The proof of (9) is
thereby complete.

In a manner similar to the derivation of (9), we obtain
(14) p(t)q(t)+e(-)[[x--xl+u-u+ T]v-v]]

+ (1- )-, E=o[X-X]
-[ y)]+ ( )

+ g(t)-- g(t) ]d

++
+[g(r)-g(r)]]d.

Since
U(t, s)x- U(t, s)x] U(t, s)x-xr]+l U(t, s)x-x+[xr-

the estimates (9) and (14) together imply the desired estimate (8).
Remark. Suppose that
R(I--2A(t+2))D(A(t)) for every t e [0, T) and0 with t+2gT,

then the conclusion of the theorem holds without the assumption that
g(t)g(t) for every point t e [0, T].
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