93. Convergence of Nonlinear Evolution Operators in Banach Spaces

By Makoto Shimizu
Department of Mathematics, Waseda University

(Communicated by Kôsaku Yosida, m. J. A., Sept. 12, 1983)

1. Introduction. In the recent works of Crandall and Pazy [2], Evans [3], Kobayashi et al. [4], and Pavel [7] has been studied the existence of an evolution operator associated with the time-dependent evolution equation

$$
\begin{equation*}
d u(\mathrm{t}) / d t \in A(t) u(t), \quad s<t<T, \quad u(s)=x, \tag{1}
\end{equation*}
$$

where $T>0, s \in[0, T), x \in \overline{D(A(s))}$, and $\{A(t) ; 0 \leqq t \leqq T\}$ is a family of (possibly multi-valued) nonlinear operators in a Banach space. The purpose of this note is to discuss the convergence of nonlinear evolution operators under more general conditions than those treated in [3], [4] and [7]. Our result gives an extension to the time-dependent case (1) of the convergence results for nonlinear semigroups due to Brezis and Pazy [1], Miyadera and Kobayashi [6] and Watanabe [8].
2. Theorem. Let X be a Banach space with norm $|\cdot|$. Let \mathcal{A} $=\{A(t) ; 0 \leqq t \leqq T\}$ be a family of nonlinear operators in X. We say that \mathcal{A} is of class $G(\omega, \rho, g)$ if \mathcal{A} satisfies the three conditions listed below:
(I) There exist $\omega \in(-\infty, \infty)$, a nondecreasing right-continuous function $\rho:[0, T] \rightarrow[0, \infty)$ with $\rho(0)=0$, and $g \in L^{1}(0, T ; X)$ such that

$$
\begin{align*}
&(\lambda+\mu-\lambda \mu \omega)|x-u| \leqq \mu|x-u-\lambda y|+\lambda|x-u+\mu v| \tag{2}\\
&+\lambda \mu(\rho(|t-s|)+|g(t)-g(s)|)
\end{align*}
$$

for any $\lambda>0, \mu>0, t, s \in[0, T],[x, y] \in A(t)$, and $[u, v] \in A(s)$.
(II) If $t_{n} \in[0, T], x_{n} \in D\left(A\left(t_{n}\right)\right), t_{n} \uparrow t$ and $x_{n} \rightarrow x$, then $x \in \overline{D(A(t))}$.
(III) For each $s \in[0, T)$ and $x \in \overline{D(A(s))}$, there exist sequences $\left\{t_{k}^{n}\right\},\left\{x_{k}^{n}\right\}$ and $\left\{\varepsilon_{k}^{n}\right\}$ such that $s=t_{0}^{n}<t_{1}^{n}<\cdots<t_{N(n)}^{n} \leqq T, x_{k}^{n} \in D\left(A\left(t_{k}^{n}\right)\right)$,
$\frac{x_{k}^{n}-x_{k-1}^{n}}{t_{k}^{n}-t_{k-1}^{n}} \in A\left(t_{k}^{n}\right) x_{k}^{n}+\varepsilon_{k}^{n}, \quad 1 \leqq k \leqq N(n)$,
$\lim \max _{k}\left(t_{k}^{n}-t_{k-1}^{n}\right)=0, \quad \lim \sum_{k=1}^{N(n)}\left(t_{k}^{n}-t_{k-1}^{n}\right)\left|\varepsilon_{k}^{n}\right|=0$,
$\lim x_{0}^{n}=x, \quad \lim t_{N(n)}^{n}=T$,
$\lim \sum_{k=1}^{N(n)} \int_{t_{k-1}^{n}}^{t_{k}^{n}}\left|g(\xi)-g\left(t_{k}^{n}\right)\right| d \xi=0$.
If \mathcal{A} is of class $G(\omega, \rho, g)$ then it is verified by applying the argument of [4] that there exists an evolution operator $U=\{U(t, s)$;
$0 \leqq s \leqq t \leqq T\}$ such that $U(t, s)$ maps $\overline{D(A(s)})$ into $\overline{D(A(t))}$ for $0 \leqq s \leqq t \leqq T$ and

$$
\begin{align*}
& |U(t, s) x-z|-|x-z| \tag{3}\\
& \qquad \begin{array}{l}
\leqq \int_{s}^{t}\left\{[U(\xi, s) x-z, w]_{+}\right.
\end{array} \quad+\omega|U(\xi, s) x-z| \\
& \\
& \quad+\rho(|\xi-r|)+|g(\xi)-g(r)|\} d \xi
\end{align*}
$$

for every $s \in[0, T), t \in[0, T], r \in[0, T], x \in \overline{D(A(s)})$ and $[z, w] \in A(r)$, where $[x, y]_{+}=\lim _{\lambda \downarrow 0}(|x+\lambda y|-|x|) / \lambda$ for $x, y \in X$. The evolution operator \mathcal{U} is constructed through the convergence of solutions (x_{k}^{n}) of discrete schemes mentioned in condition (III), and hence for $s \in[0, T$) and $x \in D(A(s))$ the function $u(t) \equiv U(t, s) x$ gives a weak solution of (1) in the sense of [4]. In this regard we say that U is an evolution operator associated with \mathcal{A}.

Let $\left\{A^{m}\right\}$ be a sequence of operators in X and define the limit operator $\operatorname{Lim} A^{m}$ of the sequence $\left\{A^{m}\right\}$ by the following: $[x, y] \in \operatorname{Lim} A^{m}$ if and only if there is a sequence $\left\{\left[x^{m}, y^{m}\right]\right\}$ such that $\left[x^{m}, y^{m}\right] \in A^{m}$ and $\lim \left(\left|x^{m}-x\right|+\left|y^{m}-y\right|\right)=0$.

Theorem. Let $\{A(t)\}$ be of class $G(\omega, \rho, g)$ and let $\left\{A^{m}(t)\right\}$ of class $G\left(\omega^{m}, \rho^{m}, g^{m}\right)$ for $m \geqq 1$. Let $\{U(t, s)\}$ and $\left\{U^{m}(t, s)\right\}$ be evolution operators associated with $\{A(t)\}$ and $\left\{A^{m}(t)\right\}$, respectively. Suppose that $\operatorname{Lim} A^{m}(t) \supset A(t)$ for every $t \in[0, T], \omega^{m} \leqq \omega, \rho^{m}(t) \rightarrow \rho(t)$ for every $t \in[0, T], g^{m} \rightarrow g$ in $L^{1}(0, T ; X)$ and $g^{m}(t) \rightarrow g(t)$ for every $t \in[0, T]$. Then for every $s \in[0, T), x \in \overline{D(A(s))}$ and $x^{m} \in \overline{\left.\overline{\left(A^{m}(s)\right.}\right)}$ with $x^{m} \rightarrow x$, we have (4)

$$
\lim U^{m}(t, s) x^{m}=U(t, s) x
$$

for $s \leqq t \leqq T$ and the convergence is uniform on $[s, T]$ with respect to t.
3. Proof of Theorem. Lemma 1. i) Let $0 \leqq s \leqq t_{0}<\cdots<t_{n}$ $\leqq T$ and set $\lambda_{k}=t_{k}-t_{k-1}$. Then

$$
\begin{equation*}
\left|t-t_{k}\right|-\left|s-t_{k}\right| \leqq \frac{1}{\lambda_{k}} \int_{s}^{t}\left(\left|\xi-t_{k-1}\right|-\left|\xi-t_{k}\right|\right) d \xi \quad(s \leqq t \leqq T, 1 \leqq k \leqq n) \tag{5}
\end{equation*}
$$

ii) (See [8].) For every h, λ, and δ with $0<h \leqq \delta, 0<h \leqq \lambda$,

$$
\begin{equation*}
\delta+\frac{1}{h} \int_{0}^{t} e^{\xi / h}\left[(\xi-\delta+h)^{2}+\lambda \xi\right]^{1 / 2} d \xi \leqq e^{t / h}\left[(t-\delta)^{2}+\lambda t\right]^{1 / 2}(t \geqq 0) \tag{6}
\end{equation*}
$$

Let $\varepsilon>0$ be fixed. Then there exist $g_{\varepsilon} \in C([0, T] ; X)$ and $L_{\varepsilon}>0$ such that $\int_{0}^{T}\left|g(t)-g_{s}(t)\right| d t<\varepsilon$ and

$$
\begin{equation*}
\rho(|t-s|)+\left|g_{\mathrm{s}}(t)-g_{\mathrm{s}}(s)\right| \leqq L_{\mathrm{s}}|t-s|+\varepsilon,(t, s \in[0, T]) \tag{7}
\end{equation*}
$$

The core of the proof of our theorem is the following.
Lemma 2. Let $s \in[0, T), x \in \overline{D(A(s)})$ and let $\left\{x^{m}\right\}$ be a sequence in X such that $x^{m} \in \overline{D\left(A^{m}(s)\right)}$ and $x^{m} \rightarrow x$. Then for $x_{0} \in X, s \leqq t_{0}<t_{1}$ $<\cdots<t_{N} \leqq T,\left[x_{k}, y_{k}\right] \in A\left(t_{k}\right)(1 \leqq k \leqq N), r \in[s, T),[u, v] \in A(r), t \in[s, T]$ and $\lambda_{k}=t_{k}-t_{k-1}$ with $\lambda_{k} \in(0,1 / \bar{\omega})(1 \leqq k \leqq N)$, we have
(8) $\lim \sup \left|U^{m}(t, s) x^{m}-U(t, s) x\right|$

$$
\leqq 2 e^{\bar{\sigma}(t-s)}\left(|x-u|+L_{\star}|s-r|+\varepsilon\right)
$$

$$
\begin{aligned}
& +2 \prod_{k=1}^{N}\left(1-\lambda_{k} \bar{\omega}\right)^{-1}\left[\left|x_{0}-u\right|+L_{s}\left|t_{0}-r\right|+\varepsilon\right] \\
& +2 \prod_{k=1}^{N}\left(1-\lambda_{k} \bar{\omega}\right)^{-1}\left[e^{\bar{\sigma}(t-s)}\left(\left(t-s-t_{k}+t_{0}\right)^{2}+\lambda(t-s)\right)^{1 / 2}\right. \\
& \left.\quad \times\left(|v|+L_{s}+\left|g_{s}(r)-g(r)\right|\right)\right] \\
& +2 \prod_{k=1}^{N}\left(1-\lambda_{k} \bar{\omega}\right)^{-1}\left[\sum_{k=1}^{N}\left(\lambda_{k}\left|g_{s}\left(t_{k}\right)-g\left(t_{k}\right)\right|+\left|x_{k}-x_{k-1}-\lambda_{k} y_{k}\right|\right)\right] \\
& +2 e^{\bar{\omega}(t-s)} \int_{s}^{t}\left|g_{s}(\xi)-g(\xi)\right| d \xi,
\end{aligned}
$$

where $\lambda=\max _{k} \lambda_{k}$ and $\bar{\omega}=\max \{1, \omega\}$.
Proof. For each $i \in\{1,2, \cdots, N\}$ choose a sequence $\left\{\left[x_{i}^{m}, y_{i}^{m}\right]\right\}$ such that $\left[x_{i}^{m}, y_{i}^{m}\right] \in A^{m}\left(t_{i}\right)$ and $\left|x_{i}^{m}-x_{i}\right|+\left|y_{i}^{m}-y_{i}\right| \rightarrow 0$ as $m \rightarrow \infty$. Moreover let $\left\{\left[u^{m}, v^{m}\right]\right\}$ be any sequence such that $\left[u^{m}, v^{m}\right] \in A^{m}(r)$ and $\left|u^{m}-u\right|$ $+\left|v^{m}-v\right| \rightarrow 0$ as $m \rightarrow \infty$. For simplicity in notation we use the following functions:

$$
\begin{aligned}
& p_{k}(t)=\left|U(t, s) x-x_{k}\right|+L_{s}\left|t-t_{k}\right|+\varepsilon, \quad k=0,1,2, \cdots, \\
& p_{k}^{m}(t)=\left|U^{m}(t, s) x^{m}-x_{k}^{m}\right|+L_{s}\left|t-t_{k}\right|+\varepsilon, \quad m=1,2, \cdots, k=0,1,2, \cdots, \\
& a_{k}=\left|x_{k}-x_{k-1}-\lambda_{k} y_{k}\right|+\lambda_{k}\left|g_{\mathrm{s}}\left(t_{k}\right)-g\left(t_{k}\right)\right|, \quad k=1,2, \cdots, \\
& b=|v|+L_{\mathrm{s}}+\left|g_{\mathrm{s}}(r)-g(r)\right|, \quad \alpha_{k}=1 / \lambda_{k}-\bar{\omega},
\end{aligned}
$$

and define $q_{k}(t)$ by

$$
\begin{aligned}
q_{k}(t)= & e^{\bar{\omega}(t-s)}\left(|x-u|+L_{\varepsilon}|s-r|+\varepsilon\right) \\
& +\prod_{i=1}^{k}\left(1-\lambda_{i} \bar{\omega}\right)^{-1}\left[\left|x_{0}-u\right|+L_{\varepsilon}\left|t_{0}-r\right|+\varepsilon+\sum_{i=1}^{k} a_{i}\right] \\
& +\prod_{i=1}^{k}\left(1-\lambda_{i} \bar{\omega}\right)^{-1}\left[e^{\bar{\omega}(t-s)}\left(\left(t-s-\sum_{i=1}^{k} \lambda_{i}\right)^{2}+\lambda(t-s)\right)^{1 / 2} b\right] \\
& +e^{\bar{\sigma}(t-s)} \int_{s}^{t}\left|g_{\mathrm{c}}(\xi)-g(\xi)\right| d \xi
\end{aligned}
$$

for $k=1,2,3, \cdots$, and $t \in[s, T]$. We shall estimate $p_{k}(t)$ and $p_{k}^{m}(t)$ by induction on k. For the values $p_{k}(t)$ we demonstrate that (9)

$$
p_{k}(t) \leqq q_{k}(t)
$$

for $k \geqq 1$. First we have

$$
\begin{aligned}
p_{0}(t) \leqq & e^{\bar{\sigma}(t-s)}\left(|x-u|+L_{\varepsilon}|s-r|+\varepsilon\right)+\left(\left|x_{0}-u\right|+L_{\varepsilon}\left|t_{0}-r\right|+\varepsilon\right) \\
& +e^{\bar{\omega}(t-s)}(t-s) b+e^{\bar{\omega}(t-s)} \int_{s}^{t}\left|g_{\varepsilon}(\xi)-g(\xi)\right| d \xi .
\end{aligned}
$$

On the other hand, the inequalities (3), (5) and (7) together imply that

$$
\begin{align*}
p_{k}(t) \leqq & p_{k}(s)-\alpha_{k} \int_{s}^{t} p_{k}(\xi) d \xi+\frac{1}{\lambda_{k}} \int_{s}^{t} p_{k-1}(\xi) d \xi \tag{10}\\
& +(t-s) a_{k} / \lambda_{k}+\int_{s}^{t}\left|g_{s}(\xi)-g(\xi)\right| d \xi .
\end{align*}
$$

From this it follows that

$$
\begin{align*}
\exp \left[\alpha_{k}(t-s)\right] p_{k}(t) \leqq & p_{k}(s)+\frac{1}{\lambda_{k}} \int_{s}^{t} \exp \left[\alpha_{k}(\xi-s)\right] p_{k-1}(\xi) d \xi \tag{11}\\
& +\left(1-\lambda_{k} \bar{\omega}\right)^{-1}\left[\exp \left[\alpha_{k}(t-s)\right]-1\right] \alpha_{k} \\
& +\int_{s}^{t} \exp \left[\alpha_{k}(\xi-s)\right]\left|g_{s}(\xi)-g(\xi)\right| d \xi
\end{align*}
$$

On the other hand, condition (I) implies that

$$
\begin{align*}
p_{k}(s) & \leqq|x-u|+L_{\varepsilon}|s-r|+\varepsilon \tag{12}\\
& +\prod_{i=1}^{k}\left(1-\lambda_{i} \bar{\omega}\right)^{-1}\left[\left|x_{0}-u\right|+L_{\varepsilon}\left|t_{0}-r\right|+\varepsilon+\sum_{i=1}^{k} a_{i}+\left(t_{k}-t_{0}\right) b\right]
\end{align*}
$$

Combining (11) with (12), we have

$$
\begin{align*}
& \exp \left[\alpha_{k}(t-s)\right] p_{k}(t) \tag{13}\\
& \leqq \frac{1}{\lambda_{k}} \int_{s}^{t} \exp \left[\alpha_{k}(\xi-s)\right] p_{k-1}(\xi) d \xi+|x-u|+L_{\varepsilon}|s-r|+\varepsilon \\
& \quad+\prod_{i=1}^{k}\left(1-\lambda_{i} \bar{\omega}\right)^{-1}\left[\left|x_{0}-u\right|+L_{\varepsilon}\left|t_{0}-r\right|+\varepsilon+\left(t_{k}-t_{0}\right) b\right. \\
& \left.\quad+\sum_{i=1}^{k-1} a_{i}+\exp \left[\alpha_{k}(t-s)\right] a_{k}\right] \\
& \quad+\int_{s}^{t} \exp \left[\alpha_{k}(\xi-s)\right]\left|g_{s}(\xi)-g(\xi)\right| d \xi .
\end{align*}
$$

Now suppose that (9) holds for $k-1$. Replacing $p_{k-1}(t)$ on the right side of (13) with $q_{k-1}(t)$ and then applying (6) with $h=\lambda_{k}$ and δ $=\sum_{i=1}^{k} \lambda_{i}$, we infer that $p_{k}(t)$ is bounded by $q_{k}(t)$. The proof of (9) is thereby complete.

In a manner similar to the derivation of (9), we obtain

$$
\begin{align*}
& p_{k}^{m}(t) \leqq \tag{14}\\
& \quad q_{k}(t)+e^{\bar{\omega}(t-s)}\left[\left|x^{m}-x\right|+\left|u^{m}-u\right|+T\left|v^{m}-v\right|\right] \\
& \quad+\prod_{i=1}^{k}\left(1-\lambda_{i} \bar{\omega}\right)^{-1} \sum_{i=0}^{k}\left|x_{i}^{m}-x_{i}\right| \\
& \\
& \quad+\prod_{i=1}^{k}\left(1-\lambda_{i} \bar{\omega}\right)^{-1}\left[\sum_{i=1}^{k}\left(\left|x_{i}^{m}-x_{i-1}^{m}-\lambda_{i} y_{i}^{m}\right|-\left|x_{i}-x_{i-1}-\lambda_{i} y_{i}\right|\right)\right] \\
& \\
& +e^{\bar{\sigma}(t-s)} \sum_{i=1}^{k} \int_{s}^{t}\left[\left|\rho^{m}\left(\left|\xi-t_{i}\right|\right)-\rho\left(\left|\xi-t_{i}\right|\right)\right|\right. \\
& \quad+\left|g^{m}(\xi)-g(\xi)\right| \\
& \\
& \left.\quad+\left|g^{m}\left(t_{i}\right)-g\left(t_{i}\right)\right|\right] d \xi \\
& \\
& \\
& \quad+\mid e^{\bar{\omega}(t-s)} \int_{s}^{t}\left[\left|\rho^{m}(|\xi-r|)-\rho(|\xi-r|)\right|+\left|g^{m}(\xi)-g(\xi)\right|\right. \\
&
\end{align*}
$$

Since

$$
\left|U^{m}(t, s) x^{m}-U(t, s) x\right| \leqq\left|U^{m}(t, s) x^{m}-x_{k}^{m}\right|+\left|U(t, s) x-x_{k}\right|+\left|x_{k}^{m}-x_{k}\right|
$$

the estimates (9) and (14) together imply the desired estimate (8).
Remark. Suppose that
$R(I-\lambda A(t+\lambda)) \supset \overline{D(A(t)})$ for every $t \in[0, T)$ and $\lambda>0$ with $t+\lambda \leqq T$, then the conclusion of the theorem holds without the assumption that $g^{m}(t) \rightarrow g(t)$ for every point $t \in[0, T]$.

The author would like to thank Prof. I. Miyadera, Dr. T. Takahashi and T. Iwamiya for their kind advices.

References

[1] H. Brezis and A. Pazy: J. Funct. Anal., 7, 63-74 (1972).
[2] M. Crandall and A. Pazy: Israel J. Math., 11, 57-94 (1972).
[3] L. Evans: ibid., 26, 1-42 (1977).
[4] K. Kobayasi, Y. Kobayashi, and S. Oharu: (to appear in Osaka J. Math.).
[5] K. Kobayasi and S. Oharu: Lect. Notes in Appl. Anal., 2, Kinokuniya Book Store Co., Tokyo, pp. 139-210 (1980).
[6] I. Miyadera and Y. Kobayashi: Japan-France Seminar on Functional Analysis and Numerical Analysis (1976).
[7] N. Pavel: Nonlinear Analysis, TMA, 5, 449-468 (1981).
[8] M. Watanabe: Proc. Japan Acad., 54A, 269-273 (1978).

