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Department of Mathematics, Osaka University

(Communicated by Kunihiko KODAIRA, M. . A., OCt. 12, 1983)

1. Introduction. Let f: (F, 3F)(M, M) be a proper map from
a bounded surface F into a 3-manifold M. The map f is called
boundary incompressible if it is not properly homotopic to a map g"

(F, F)--.(M, 3M) such that g(F)cM. Let F’ be a surface properly
embedded in M. F’ is called essential if it is incompressible and inc:
(F, 3F)-.(M, 3M) is boundary incompressible.

In this paper we will prove an equivariant essential annulus theo-
rem for the Haken manifolds whose boundary components are all tori.

Theorem 1.*) Let M be a bounded, Haken manifold whose
boundary components are all tori and which i not homeomorphic to
T2X I where T denotes the 2-dimensional torus and I denotes the unit
interval [0, 1]. Suppose that there is an essential annulus A’ in M.
If G is a finite subgroup of Diff (M) then there exists an essential
annulus A* in M such that either g(A*)=A* or g(A*) A*= for each
element g of G.

Note that for TI this theorem does not hold. See the remark
of section 2 below.

The examples of 3-manifold admitting no nontrivial, finite group
actions are constructed by Raymond-Tollefson [7] and Siebenmann [9].
As an application of Theorem 1 we will give a simple construction of
such 3-manifolds by using the knot theory (Theorem 2).

I would like to express my gratitude to Profs. M. Ochiai, A.
Kawauchi and N. Nakauchi for helpful conversations.

2. Proof of Theorem 1. Throughout this paper we will work
in the C-category. For the definitions of standard terms in the three
dimensional topology we refer to [3] and [4].

The proof of Theorem 1 depends on the following result which is.
due to Nakauchi [6]. The author was informed that J. Hass had
proved a similar result in his Ph. D. thesis.

Theorem A (Nakauchi). Let M be a compact, orientable, 3-dimen-
sional, Riemannian manifold with convex incompressible boundary
and let A be a smooth annulus. Suppose that there is an essential
smooth map f: (A, A)-(M, M). Then

(1) there exists an essential smooth immersion f* (A, A)
*) T. Soma independently obtained the similar result.
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(M, 3M) which has least area among all such essential smooth maps,
(2) any such least area immersion is either an embedding or a

double covering map onto an embedded M6bius band,
(3) the image of any two such least area maps are disjoint or

are equal or intersect each other only at ,one essential arc. Moreover,
all the distinct images of the double covering maps are mutually
disjoint.

Lemma 2.1. Let M be a bounded Haken manifold whose bound-
ary components are all tori and which is homeomorphic to neither
TI nor the twisted I-bundle over the Klein bottle and let A, A be
essential annuli in M such that a component S of 3A and a component
S. of 3A. are contained in the same component T of 3M. Then S is
isotopic to. S. in T.

Proof. Assume that S is not isotopic to S in T. By [4], [5]
there is a characteristic Seifert pair Z in M such that the components
of Fr 2’ are all tori where Fr 2" denotes the frontier of 2’ in M. Let
a be a component of 2’ such that Ta. By the homotopy annulus
theorem (Theorem VIII. 10 of [4]) we may suppose that Aca, Aca.
Then a admits such Seifert fibration that S (i-1, 2) is a regular fiber
(see Theorem VIII. 34 of [4]). So. a admits two, fibrations which are
not isotopic. Hence by Theorem VI. 18 of [4] a is homeomorphic to
the solid torus, TI or the twisted/-bundle over the Klein bottle.

Since a contains an essential annulus, a is not the solid torus. If
a is the twisted/-bundle over the Klein bottle then so is M and this is
a contradiction. Suppose a is T I. Since A is essential in M, A
intersects both components of 3a. Hence M is TI and this is a
contradiction.

This completes the proof of Lemma 2.1.

Proof of Theorem 1. It is elementary to construct an invariant
metric on M with convex boundary. There is an incompressible and
boundary incompressible map f: (A, A)--.(M, M) which satisfies the
conclusions of Theorem A.

If f is an embedding then set A*--f(A). By Theorem A either
g(A*)---A*, g(A*) A*- or g(A*) A* is an essential arc of A* for
each element g of G. If M is not the twisted /-bundle over the Klein
bottle then by Lemma 2.1 the third case cannot occur. So we have
the conclusion of Theorem 1. If M is the twisted /-bundle over the
Klein bottle then there are only two proper homotopy classes in all
essential annuli in M and one of them represents such an annulus that
cuts M into two solid tori, the other cuts M into. one solid torus (see
Example VI. 5 (d) of [4]). Hence A* and g(A*) are isotopic in M and
we again cannot have he third case.
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If f double covers a MSbius band F in M then by Theorem A (3)
either g(F)---F or g(F)F---. Then by [1] there exists a regular
neighborhood R of F such that either g(R)--R or g(R) R--. Then
we set A*=Fr R. A* is an essential annulus and satisfies the con-
clusion of Theorem 1.

This completes the proof of Theorem 1.
Remark. We show that for TI Theorem 1 does not hold. Let

: T--.T be a periodic map such that .: (T)--.z(T) is represented

by the 22 matrix B-(_10 _) for the fixed basis of (T) and let

T I--+T I be ida. Let A’ be an essential annulus in T I and
S be a component of A’ contained in T(1}. We can identify the
universal cover of T{1} to R and qlr is conjugate to the map f"
TX{1}-+Tx {1} such that f lifts to an affine map A: x_--.Bx_+c of R
where _x, c denote R vectors. Then S, lifts to a line in R. Since
the eigen value of B is not _+ 1, and A(1) are not coinside and inter-
sect. Hence we have f(S)=/=S and f(S)S=/= and so there are no
-equivariant essential annuli in T X I.

3. Theorem 2. In this section we will state Theorem 2 and
prove it.

A knot K is a simple closed curve in the 3-sphere S. The exterior
Q(K) of K is the closure of the complement of the regular neighborhood
of K. K is srongly negative amphicheiral (strongly invertible resp.)
if there is an orientation reversing (preserving resp.) involution g of
S which satisfies (i)g(K)=K and (ii)gl reverses the orientation of
K. The meridian m(K) of K is a nontrivial simple closed curve in
Q(K) which bounds a disk in S-Int Q(K).

For the definitions of other standard terms in the knot theory we
refer to [8].

Theorem 2. Let K1 be a non strongly negative amphicheiral,
prime knot and K be a non strongly invertible, prime knot such that
Q(KI) is not homeomorphic to Q(K). Then M=Q(K#K) admits no
nontrivial, finite group actions where # denotes tke composition of
knots.

Proof. Assume that there is a periodic map f of M which is not
ida. We may suppose that the period of f is a prime integer. There
is an essential annulus A in M which cuts M into M and M where M
(i= 1, 2) is homeomorphic to Q(K). By Lemma 2.1 and the uniqueness
of the prime decomposition of knots we see that the essential annulus
in M is unique up to isotopy. By Theorem I we may suppose that
f(A)=A or f(A)

We claim that f(A)--A hence f(M,)=M,. Assume that f(A) A
=. Then f(A) is parallel to A and so we have f(M,)M, (i=l or 2)
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for M is not homeomorphic to M. Hence we have Mf(M)f(M)..., which contradicts the periodicity of f and the claim is es-
tablished.

So we have the periodic map f=fl" (M, A)---(M, A). If f is
orientation reversing involution then f extends to an orientation
reversing involution g of S such that g(K)--K and g l, reverses the
orientation of K, which is a contradiction. If f is orientation pre-
serving and f preserves each component of 3A then f extends to an
orientation preserving periodic map g of S such that Fix (g)--KK
where Fix (g) denotes the fixed point set of g. This contradicts the
Smith conjecture [10]. If f is orientation preserving and f exchanges
the components of 3A then the order of f is two and f extends to an
orientation preserving involution g of S such that g(K)-K and gl
reverses the orientation of K. This is a contradiction.

Hence M admits no nontrivial finite group actions and this com-
pletes the proof of Theorem 2.
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