114. A Note on the Approximate Functional Equation for $\zeta^{2}(s)$

By Yoichi Motohashi
Department of Mathematics, College of Science and Technology, Nihon University
(Communicated by Kunihiko Kodarra, m. J. A., Oct. 12, 1983)

1. Let $0 \leq \sigma \leq 1, t \geq 2, X Y=t^{2} / 4 \pi^{2}, x y=t / 2 \pi$, and put
(1)

$$
\begin{aligned}
& \zeta(s)=\sum_{n \leq x} n^{-s}+\chi(s) \sum_{n \leq y} n^{s-1}+E(s, x), \\
& \zeta^{2}(s)=\sum_{n \leq X} d(n) n^{-s}+\chi^{2}(s) \sum_{n \leq Y} d(n) n^{s-1}+D(s, X)
\end{aligned}
$$

where d is the divisor function and $\chi(s)=2^{s} \pi^{s-1} \sin (s \pi / 2) \Gamma(1-s)$. Hardy and Littlewood [1] proved that

$$
\begin{equation*}
E(s, x) \ll x^{-\sigma}+t^{1 / 2-\sigma} y^{\sigma-1} \tag{2}
\end{equation*}
$$

as well as

$$
D(s, X) \ll X^{1 / 2-\sigma}\left(\frac{X+Y}{t}\right)^{1 / 4} \log t
$$

Later Titchmarsh [5] replaced the latter by

$$
\begin{equation*}
D(s, X) \ll(X+Y)^{1 / 2-\sigma} \log t \tag{3}
\end{equation*}
$$

Also we should note that Jutila [4] remarked recently that (3) is a consequence of Voronoi's summation formula.

The arguments of these authors are rather elaborated, mainly because they treated $\zeta^{2}(s)$ directly, i.e. without recoursing to the known approximations for $\zeta(s)$. Here we shall show that if we make use of Dirichlet's device:

$$
\begin{equation*}
\sum_{n \leq N} d(n) a_{n}=2 \sum_{n \leq \sqrt{N}} \sum_{m \leq N / n} a_{n m}-\sum_{n \leq \sqrt{N}} \sum_{m \leq \sqrt{N}} a_{n m}, \tag{4}
\end{equation*}
$$

then, as far as the most interesting case $X=Y=t / 2 \pi$ is concerned, (3) is a quite simple consequence of (2).

For this end let $U=t / 2 \pi, u=\sqrt{U}$. Then by (4) we have

$$
\begin{array}{rl}
\sum_{n \leq U} d & d(n) n^{-s}+\chi^{2}(s) \sum_{n \leq U} d(n) n^{s-1} \\
= & 2 \sum_{m \leq u} m^{-s} \sum_{n \leq U / m} n^{-s}+2 \chi^{2}(s) \sum_{m \leq u} m^{s-1} \sum_{n \leq U / m} n^{s-1} \\
\quad & \quad-\left(\sum_{m \leq u} m^{-s}\right)^{2}-\chi^{2}(s)\left(\sum_{m \leq u} m^{s-1}\right)^{2} .
\end{array}
$$

And by (1) this is equal to

$$
\begin{aligned}
& 2 \sum_{m \leq u} m^{-s}\left\{\zeta(s)-\chi(s) \sum_{n \leq m} n^{s-1}-E(s, U / m)\right\} \\
& \quad+2 \chi^{2}(s) \sum_{m \leq u} m^{s-1}\left\{\zeta(1-s)-\chi(1-s) \sum_{n \leq m} n^{-s}-E(1-s, U / m)\right\} \\
& \quad+2 \chi(s) \sum_{m \leq u} m^{-s} \sum_{n \leq u} n^{s-1}-(\zeta(s)-E(s, u))^{2} .
\end{aligned}
$$

Then, after some rearrangement, we get

$$
\begin{align*}
\zeta^{2}(s)= & \sum_{n \leq U} d(n) n^{-s}+\chi^{2}(s) \sum_{n \leq U} d(n) n^{s-1}+2 \chi(s) \sum_{n \leq u} \frac{1}{n} \tag{5}\\
& +2 \sum_{m \leq u} m^{-s} E(s, U / m)+2 \chi^{2}(s) \sum_{m \leq u} m^{s-1} E(1-s, U / m)+E^{2}(s, u) .
\end{align*}
$$

Inserting (2) into this we readily obtain (3) for the case $X=Y=t / 2 \pi$.
2. Next, let us see what the above argument will yield if we replace (2) by a more precise estimate obtainable by the method of Riemann and Siegel (see e.g. [6, Chap. 4]). This gives, for $1 \leq x$ $\leq t / 2 \pi$,

$$
\begin{aligned}
E(s, x)= & (2 \pi)^{s-2} e^{-\pi t s / 2} \Gamma(1-s) y^{s-1} \int_{L} \exp \left(\frac{x i}{4 \pi y}(w-2 \pi i\{y\})^{2}\right. \\
& +x(w-2 \pi i\{y\})-[x] w)\left(e^{w}-1\right) d w+O\left(\left(t^{1 / 2-\sigma} y^{\sigma-1}+x^{-\sigma}\right) t^{-1 / \sigma}\right)
\end{aligned}
$$

where $\{y\}=y-[y]$, and L is a straight line in the direction $\arg w=\pi / 4$ passing between 0 and $2 \pi i$. Thus we have, in (5),

$$
\begin{array}{rl}
\sum_{m \leq u} m^{-s} & E(s, U / m) \\
= & (2 \pi)^{s-2} e^{-\pi t s / 2} \Gamma(1-s) \sum_{m \leq u} \frac{1}{m} \int_{L} \exp \left(\frac{t i}{8 \pi^{2} m^{2}} w^{2}+\left\{\frac{t}{2 \pi m}\right\} w\right) \\
& \times\left(e^{w}-1\right)^{-1} d w+O\left(t^{1 / 3-\sigma} \log t\right) .
\end{array}
$$

Then we deform L to the curve composed of two parts: $w=\left\{\lambda e^{\pi i / 4}, \lambda \geq \delta\right.$ and $\lambda \leq-\delta\}$ and $\left\{w=\delta e^{i(\theta+\pi / 4)}, 0 \leq \theta \leq \pi\right\}$ where $\delta>0$, and let δ tend to 0 . This gives

$$
\int_{L}=-\pi i+\varepsilon \int_{0}^{\infty} e^{-\left(t / 8 \pi^{2} m^{2}\right) \lambda^{2}} \frac{\sin ((\{t / 2 \pi m\}-1 / 2) \lambda / \varepsilon)}{\sin \lambda / 2 \varepsilon} d \lambda,
$$

where $\varepsilon=e^{\pi i / 4}$.
Hence we have

$$
\begin{align*}
& \sum_{m \leq u} m^{-s} E(s, U / m)=-\frac{\chi(s)}{2} \sum_{m \leq u} \frac{1}{m} \\
& +\varepsilon(2 \pi)^{s-2} e^{-\pi t s / 2} \Gamma(1-s) \int_{0}^{\infty} \sum_{m \leq u} \frac{e^{-\left(t / 8 \pi^{2} m^{2}\right) \lambda^{2}}}{m} \frac{\sin ((\{t / 2 \pi m\}-1 / 2) \lambda / \varepsilon)}{\sin \lambda / 2 \varepsilon} d \lambda \tag{6}\\
& +O\left(t^{1 / 3-\sigma} \log t\right) .
\end{align*}
$$

To estimate this integrand, we introduce the Fourier expansion: For $0<v<1$

$$
\frac{\sin ((v-1 / 2) \lambda / \varepsilon)}{\sin \lambda / 2 \varepsilon}=-8 \pi \sum_{j=1}^{\infty} \frac{j}{4 \pi^{2} j^{2}+\lambda^{2} i} \sin (2 \pi j v)
$$

which is boundedly convergent uniformly for all real λ. Then, invoking an idea of Hooley [3, p. 104], we have, for any $J \geq 1$,

$$
\begin{align*}
& \frac{\sin ((\{t / 2 \pi m\}-1 / 2) \lambda / \varepsilon)}{\sin \lambda / 2 \varepsilon}=-8 \pi \sum_{j=1}^{J} \frac{j}{4 \pi^{2} j^{2}+\lambda^{2} i} \sin \left(\frac{j t}{m}\right) \tag{7}\\
& \quad+O\left(\sum_{j=0}^{\infty} A_{j}(J) \cos \left(\frac{j t}{m}\right)\right)+O\left(I\left(\frac{t}{2 \pi m}\right)\right),
\end{align*}
$$

where

$$
A_{j}(J)=O\left(\min \left(\frac{\log J}{J}, \frac{J}{j^{2}}\right)\right),
$$

and I is the characteristic function of the set of integers; here the O-constants are all independent of λ.

Now, we divide the integrand in question into two parts according to $m \leq t^{1 / 3}$ and $t^{1 / 3}<m \leq u$. Since the sin-factor is $O(1)$ we see readily that the first part contributes to (6) the amount of $O\left(t^{1 / 3-\sigma}\right)$. As for the second part we consider, instead, the estimation of the sum

$$
\begin{equation*}
\sum_{M<m \leq 2 M} \frac{\sin ((\{t / 2 \pi m\}-1 / 2) \lambda / \varepsilon)}{\sin \lambda / 2 \varepsilon}, \quad\left(t^{1 / 3} \ll M \ll t^{1 / 2}\right) . \tag{8}
\end{equation*}
$$

But we have (7), so the problem is reduced to that of

$$
\sum_{M<m \leq 2 M} e^{j t t / m} .
$$

Appealing to van der Corput's method (see e.g. [6, p. 90]), this is estimated to be $O\left(M^{-1 / 2} t^{1 / 2} j^{1 / 2}\right)$ if $j \neq 0$. Hence setting $J=t^{-1 / 3} M(\log t)^{1 / 2}$ in (7) we find that (8) is $O\left(t^{1 / 3}(\log t)^{1 / 2}\right)$ uniformly for all real λ. Then, summing partially over m and integrating with respect to λ we conclude that the second part in question of the integrand of (6) contributes to it the amount of $O\left(t^{1 / 3-\sigma}(\log t)^{3 / 2}\right)$.

Hence we have found

$$
\sum_{m \leq u} m^{-s} E(s, U / m)=-\frac{\chi(s)}{2} \sum_{m \leq u} \frac{1}{m}+O\left(t^{1 / 3-\sigma}(\log t)^{3 / 2}\right)
$$

Inserting this into (5) we obtain the following improvement on (3):
Theorem.
(9)

$$
D(s, t / 2 \pi)=O\left(t^{1 / 3-\sigma}(\log t)^{3 / 2}\right)
$$

Remark. By elaborating our argument one may probably replace (9) by an asymptotic expansion, i.e. an analogue for $\zeta^{2}(s)$ of the Riemann-Siegel formula for $\zeta(s)$. Also one may treat the non-symmetric case (i.e. $X \neq Y$) as well. Further we should remark that our theorem may be incorporated into the asymptotic evaluation of the fourth power moment of $\zeta(s)$ (cf. [2]). To these and further improvements we shall return elsewhere.

Added in proof. (i) A refinement of the above argument yields

$$
\begin{equation*}
D\left(s, \frac{t}{2 \pi}\right)=-2\left(\frac{\pi}{t}\right)^{1 / 2} \Delta\left(\frac{t}{2 \pi}\right) \chi(s)+O\left(t^{1 / 4-\sigma}\right), \tag{10}
\end{equation*}
$$

in which $\Delta(x)$ is defined as (12.1.2) of [6]. Obviously this is better than (9), and gives an Ω-result for $D(s, t / 2 \pi)$.
(ii) Professor Jutila kindly sent us a preprint in which he proved a result similar to (but weaker than) (9). Also, in a letter to us, he indicated that his argument might yield a result like (10).

References

[1] G. H. Hardy and J. E. Littlewood: The approximate functional equation for $\zeta(s)$ and $\zeta^{2}(s)$. Proc. London Math. Soc., (2) 29, 81-97 (1929).
[2] D. R. Heath-Brown: The fourth power moment of the Riemann zeta-function. ibid., (3) 38, 385-422 (1979).
[3] C. Hooley: On the number of divisors of quadratic polynomials. Acta Math., 110, 97-114 (1963).
[4] M. Jutila: Transformation formulae for Dirichlet polynomials (to appear).
[5] E. C. Titchmarsh: The approximate functional equation for $\zeta^{2}(s)$. Quart. J. Math. Oxford, 9, 109-114 (1938).
[6] -: The Theory of the Riemann Zeta-function. Oxford (1951).

