112. On Certain Cubic Fields. IV

By Mutsuo WATABE

Department of Mathematics, Keio University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1983)

1. We shall use the following notations: For an algebraic number field k, the discriminant, the class number, the ring of integers and the group of units are denoted by D(k), h(k), \mathcal{O}_k and E_k respectively. The discriminant of an algebraic integer ρ will be denoted by $D_k(\rho)$ and the discriminant of a polynomial $h(x) \in \mathbb{Z}(x)$ by D_h . (*/*)means the quadratic residue symbol.

The purpose of this note is to give some devices of generating cubic fields of certain types with even class numbers. We shall prove:

Theorem A. Let $K = Q(\theta)$, $Irr(\theta; Q) = f(x) = x^3 - mx^2 - (m+3)x$ -1, $m \in \mathbb{Z}$ with odd m and $m \ge 1$. Suppose there exists a prime number q satisfying

(i) $(r(\theta), q) = 1$, where $D_{K}(\theta) = r(\theta)^{2}D(K)$,

(ii) $f(x) \equiv (x+a)(x+b)(x+c) \pmod{q}$, where any two of a, b, c $\in \mathbb{Z}$ are not congruent mod q, a > 0, $a \not\equiv 0$, m, $m+1 \pmod{4}$,

(iii) ((a-b)/q) = -1,

(iv) $-f(-a) = a^3 + ma^2 - (m+3)a + 1 = t^2$ for some odd $t \in \mathbb{Z}$. Then we have 2 | h(K).

Theorem A'. Let $K = Q(\theta)$, $Irr(\theta; Q) = f(x) = x^3 - mx^2 - (m+3)x$ -1, $m \in \mathbb{Z}$ with $3 \nmid m$ and $m \ge 1$.

(1) Suppose $m \equiv 3 \pmod{4}$ and $2m+3=u^2$ for some $u \in \mathbb{Z}$. If 2m+3 has a prime factor q such that $q=12s\pm 5$, then we have 2|h(K). Examples: 11, 23. It is easy to see that there are infinitely many m's satisfying this condition.

(II) Suppose $m \equiv 1 \pmod{4}$. Let q be a prime factor $(\neq 7)$ of 6m+19. Then we have

(*) $f(x) \equiv (x+3)(x+b)(x+c) \pmod{q}$, where $b \not\equiv 3$, $c \not\equiv 3 \pmod{q}$.

If $6m+19=v^2$ for some $v \in \mathbb{Z}$ and ((3-b)/q)=-1 in (*), we have 2|h(K). Examples: m=17, 25.

Theorem B. Let $F = Q(\delta)$, Irr $(\delta; Q) = g(x) = x^3 - nx^2 - (n+1)x - 1$, $u \in \mathbb{Z}$ with $n \equiv 3 \pmod{4}$ but $n \neq 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, -6$. If D_g is square free, then we have 2 | h(F). Examples: n = 7, 11, 15.

2. Proof of Theorem A. As $\sqrt{D_f} = m^2 + 3m + 9 \in \mathbb{Z}$, K/Q is totally real and Galois. In virtue of (i), (ii), (q) is completely decomposed in K in the form $(q) = q_1q_2q_3$, where $q_1 = (q, \theta + a)$, $q_2 = (q, \theta + b)$, $q_3 = (q, \theta + c)$ are different prime ideals of first degree of K.

We shall show that $L = K(\sqrt{\theta} + a)$ is a quadratic extension of K. In fact, if $\sqrt{\theta + a} = \alpha \in K$, then we have $\theta + a = \alpha^2$, which yields $a - b \equiv \alpha^2$ (mod \mathfrak{q}_2) in virtue of $\mathfrak{q}_2 = (q, \theta + b)$. We have also $a - b \equiv \alpha'^2 \pmod{\mathfrak{q}_2}$ and $a - b \equiv \alpha''^2 \pmod{\mathfrak{q}_2'}$. Then we have ((a - b)/q) = 1, which contradicts to (ii). Thus $L = K(\sqrt{\theta + a})$ is a quadratic extension of K.

As *m* is odd, we have $m \equiv 1 \pmod{4}$ or $m \equiv 3 \pmod{4}$. We have $a \equiv 3 \pmod{4}$ when $m \equiv 1 \pmod{4}$ in virtue of (iv) and $a \not\equiv 0$, $m+1 \pmod{4}$, and we have also $a \equiv 2 \pmod{4}$ when $m \equiv 3 \pmod{4}$ in virtue of (iv) and $a \not\equiv 0$, *m* (mod 4). Thus we have only to consider the case $m \equiv 1 \pmod{4}$, $a \equiv 3 \pmod{4}$ and the case $m \equiv 3 \pmod{4}$, $a \equiv 2 \pmod{4}$.

It is easy to see that all roots of f(x) are >-2, so that $\theta+a$ is totally positive in virtue of a>0, and $a\equiv 3 \pmod{4}$ or $a\equiv 2 \pmod{4}$. Thus infinite primes of K is unramified in L.

As $-f(-a)=N_{K/Q}(\theta+a)=t^2$, no prime divisor of K except (2) is ramified. We shall show that (2) is also unramified in L.

(a) In the case $m \equiv 1 \pmod{4}$, $a \equiv 3 \pmod{4}$, we consider $\omega = (\theta^2 + \theta + 2 + \sqrt{\theta + a})/2 \in L$. We have $\omega \in \mathcal{O}_L$, since $\operatorname{Tr}_{L/K}(\omega) = \theta^2 + \theta + 2 \in \mathcal{O}_K$ and $N_{L/K}(\omega) = ((\theta^2 + \theta + 2)^2 - (\theta + a))/4 \in \mathcal{O}_K$ in virtue of $m \equiv 1 \pmod{4}$, $a \equiv 3 \pmod{4}$. The discriminant $D(\omega)$ is $\theta + a$ and we have $(D(\omega), (2))$ = 1 as $-f(-a) = N_{K/Q}(\theta + a) = t^2$ is odd. Hence (2) is unramified in L. We have thus an unramified quadratic extension L of K and consequently we have $2 \mid h(K)$.

(b) In the case $m \equiv 3 \pmod{4}$, $a \equiv 2 \pmod{4}$, consider $\gamma = (\theta^2 + \theta + 1 + \sqrt{\theta + a})/2 \in L$. Then we see that L is an unramified quadratic extension of K as in the above (a). Thus we have 2 | h(K).

Proof of Theorem A'. (1) As q|2m+3 and $3\notan$, we have (q, 6) = 1. If $q|r(\theta)$, then we have $q|2^4D(\theta)$ in virtue of $D_K(\theta) = r(\theta)^2D(K)$, so that we have q=3 in virtue of $2^4D_K(\theta) = 2^4D_f = 2^4(m^2+3m+9) = ((2m+3)^2+27)^2$ and q|2m+3. This contradicts to the fact (q, 6)=1. Hence we have $(r(\theta), q)=1$ and consequently the condition (i) in Theorem A is satisfied. Since $f(x)\equiv (x+2)(x-1)(x-m-1) \pmod{2m+3}$ and q|2m+3, we have also

(**) $f(x) \equiv (x+2)(x-1)(x-m-1) \pmod{q}$,

and any two of -1, 2, -m-1 are not congruent mod q in virtue of $q \neq 3$. Hence the condition (ii) in Theorem A is satisfied. (iv) in Theorem A is also satisfied as $-f(-2)=2m+3=u^2$ is odd. We may put a=2, b=-1 in (i) in virtue of (**) and $m\equiv 3 \pmod{4}$, so that we have ((a-b)/q)=(3/q). Then we have ((a-b)/q)=-1 in virtue of $q=12s\pm 5$. Thus (iii) in Theorem A is satisfied.

(II) It is clear that $f(x) \equiv (x+3)(x^2-(m+3)x+2m+6) \pmod{6m}$ +19). As K/Q is Galois and $q \mid 6m+19, q \neq 7$, we have (*) immediately. Hence (ii) in Theorem A is satisfied. If $q | r(\theta)$, then we have $q | 6^4D_\kappa(\theta)$ in virtue of $D_\kappa(\theta) = r(\theta)^2 D(K)$, so that we have q = 7 in virtue of $6^4D_\kappa(\theta) = 6^4D_f = 6^4(m^2 + 3m + 9)^2 = ((6m + 19)^2 + 7^3)^2$ and q | 6m + 19. However this contradicts to the fact $q \neq 7$. Hence we have $(r(\theta), q) = 1$, so that the condition (i) in Theorem A is satisfied. We may put a = 3 in virtue of $m \equiv 1 \pmod{4}$. Then (iii) in Theorem A is satisfied in virtue of ((3-b)/q) = -1. As $-f(-3) = 6m + 19 = v^2$ is odd, (iv) in Theorem A is also satisfied.

3. Proof of Theorem B. It is clear that F is totally real as $D_q > 0$ with $n \ge 6$ and that F is non Galois as $D_q = (n^2 + n - 3)^2 - 32$ can not be a square with $n \ge 6$. It is also clear that δ , $\delta + 1$ are units of F. We shall show that $M = F(\sqrt{\delta + 1})$ is a quadratic extension of F. In fact, if $\sqrt{\delta + 1} = \nu \in F$, then $\delta + 1 = \nu^2$ and $\nu \in E_F$. This contradicts to the fact $E_F = \langle \pm 1 \rangle \times \langle \delta, \delta + 1 \rangle$ (see [3]). Therefore $M = F(\sqrt{\delta + 1})$ is a quadratic extension of F.

As all roots of g(x) are >-1 for $n \ge 6$, $\delta+1$ is totally positive. Hence no infinite prime is ramified in M.

As $\delta + 1 \in E_F$, no prime divisor of F except (2) is ramified in M. Consider $\xi = (\delta^2 + \delta + \sqrt{\delta + 1})/2 \in M$. It is easily verified that $\xi \in \mathcal{O}_M$ in virtue of $n \equiv 3 \pmod{4}$. We have $(D(\xi), (2)) = 1$ as $D(\xi) = \delta + 1 \in E_F$. Hence (2) is also unramified, and M is an unramified quadratic extension of F so that we obtain 2 |h(F). The proof is completed.

References

- H. Cohn: A device for generating fields of even class number. Proc. Amer. Math. Soc., 7, 595-598 (1956).
- [2] K. Uchida: On a cubic cyclic field with discriminant 163². J. Number Theory, 8, 346-349 (1976).
- [3] M. Watabe: On certain cubic fields. III. Proc. Japan Acad., 59A, 260-262 (1983).