112. On Certain Cubic Fields. IV

By Mutsuo Watabe
Department of Mathematics, Keio University

(Communicated by Shokichi Iyanaga, m. J. A., Oct. 12, 1983)

1. We shall use the following notations: For an algebraic number field k, the discriminant, the class number, the ring of integers and the group of units are denoted by $D(k), h(k), \mathcal{O}_{k}$ and E_{k} respectively. The discriminant of an algebraic integer ρ will be denoted by $D_{k}(\rho)$ and the discriminant of a polynomial $h(x) \in \boldsymbol{Z}(x)$ by D_{h}. (*/*) means the quadratic residue symbol.

The purpose of this note is to give some devices of generating cubic fields of certain types with even class numbers. We shall prove:

Theorem A. Let $K=\boldsymbol{Q}(\theta), \operatorname{Irr}(\theta ; \boldsymbol{Q})=f(x)=x^{3}-m x^{2}-(m+3) x$ $-1, m \in Z$ with odd m and $m \geqq 1$. Suppose there exists a prime number q satisfying
(i) $(r(\theta), q)=1$, where $D_{K}(\theta)=r(\theta)^{2} D(K)$,
(ii) $f(x) \equiv(x+a)(x+b)(x+c)(\bmod q)$, where any two of a, b, c $\in \boldsymbol{Z}$ are not congruent $\bmod q, a>0, a \not \equiv 0, m, m+1(\bmod 4)$,
(iii) $((a-b) / q)=-1$,
(iv) $-f(-a)=a^{3}+m a^{2}-(m+3) a+1=t^{2}$ for some odd $t \in \boldsymbol{Z}$. Then we have $2 \mid h(K)$.

Theorem \mathbf{A}^{\prime}. Let $K=\boldsymbol{Q}(\theta), \operatorname{Irr}(\theta ; \boldsymbol{Q})=f(x)=x^{3}-m x^{2}-(m+3) x$ $-1, m \in \boldsymbol{Z}$ with $3 \nmid m$ and $m \geqq 1$.
(I) Suppose $m \equiv 3(\bmod 4)$ and $2 m+3=u^{2}$ for some $u \in \boldsymbol{Z}$. If $2 m+3$ has a prime factor q such that $q=12 s \pm 5$, then we have $2 \mid h(K)$. Examples:11,23. It is easy to see that there are infinitely many m's satisfying this condition.
(II) Suppose $m \equiv 1(\bmod 4)$. Let q be a prime factor $(\neq 7)$ of $6 m+19$. Then we have
(*) $\quad f(x) \equiv(x+3)(x+b)(x+c)(\bmod q)$, where $b \not \equiv 3, c \not \equiv 3(\operatorname{m} ; \mathrm{d} q)$.
If $6 m+19=v^{2}$ for some $v \in Z$ and $((3-b) / q)=-1$ in $(*)$, we have $2 \mid h(K)$. Examples: $m=17,25$.

Theorem B. Let $\boldsymbol{F}=\boldsymbol{Q}(\delta)$, $\operatorname{Irr}(\delta ; \boldsymbol{Q})=g(x)=x^{3}-n x^{2}-(n+1) x-1$, $u \in Z$ with $n \equiv 3(\bmod 4)$ but $n \neq 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5,-6$. If D_{g} is square free, then we have $2 \mid h(F)$. Examples: $n=7,11,15$.
2. Proof of Theorem A. As $\sqrt{D_{f}}=m^{2}+3 m+9 \in \boldsymbol{Z}, K / \boldsymbol{Q}$ is totally real and Galois. In virtue of (i), (ii), (q) is completely decomposed in K in the form $(q)=\mathfrak{q}_{1} \mathfrak{q}_{2} \mathfrak{q}_{3}$, where $\mathfrak{q}_{1}=(q, \theta+a), \quad \mathfrak{q}_{2}=(q, \theta+b)$,
$\mathfrak{q}_{3}=(q, \theta+c)$ are different prime ideals of first degree of K.
We shall show that $L=K(\sqrt{\theta+a})$ is a quadratic extension of K. In fact, if $\sqrt{\theta+a}=\alpha \in K$, then we have $\theta+\alpha=\alpha^{2}$, which yields $a-b \equiv \alpha^{2}$ $\left(\bmod \mathfrak{q}_{2}\right)$ in virtue of $\mathfrak{q}_{2}=(q, \theta+b)$. We have also $a-b \equiv \alpha^{\prime 2}\left(\bmod \mathfrak{q}_{2}^{\prime}\right)$ and $a-b \equiv \alpha^{\prime \prime 2}\left(\bmod \mathfrak{q}_{2}^{\prime \prime}\right)$. Then we have $((a-b) / q)=1$, which contradicts to (ii). Thus $L=K(\sqrt{\theta+a})$ is a quadratic extension of K.

As m is odd, we have $m \equiv 1(\bmod 4)$ or $m \equiv 3(\bmod 4)$. We have $a \equiv 3(\bmod 4)$ when $m \equiv 1(\bmod 4)$ in virtue of (iv) and $a \not \equiv 0, m+1$ $(\bmod 4)$, and we have also $a \equiv 2(\bmod 4)$ when $m \equiv 3(\bmod 4)$ in virtue of (iv) and $a \not \equiv 0, m(\bmod 4)$. Thus we have only to consider the case $m \equiv 1(\bmod 4), a \equiv 3(\bmod 4)$ and the case $m \equiv 3(\bmod 4), a \equiv 2(\bmod 4)$.

It is easy to see that all roots of $f(x)$ are >-2, so that $\theta+a$ is totally positive in virtue of $a>0$, and $a \equiv 3(\bmod 4)$ or $a \equiv 2(\bmod 4)$. Thus infinite primes of K is unramified in L.

As $-f(-a)=N_{K / Q}(\theta+a)=t^{2}$, no prime divisor of K except (2) is ramified. We shall show that (2) is also unramified in L.
(a) In the case $m \equiv 1(\bmod 4), a \equiv 3(\bmod 4)$, we consider $\omega=\left(\theta^{2}\right.$ $+\theta+2+\sqrt{\theta+a}) / 2 \in L$. We have $\omega \in \mathcal{O}_{L}$, since $\operatorname{Tr}_{L / K}(\omega)=\theta^{2}+\theta+2 \in \mathcal{O}_{K}$ and $N_{L / K}(\omega)=\left(\left(\theta^{2}+\theta+2\right)^{2}-(\theta+a)\right) / 4 \in \mathcal{O}_{K}$ in virtue of $m \equiv 1(\bmod 4)$, $a \equiv 3(\bmod 4)$. The discriminant $D(\omega)$ is $\theta+a$ and we have $(D(\omega)$, (2)) $=1$ as $-f(-a)=N_{K / Q}(\theta+a)=t^{2}$ is odd. Hence (2) is unramified in L. We have thus an unramified quadratic extension L of K and consequently we have $2 \mid h(K)$.
(b) In the case $m \equiv 3(\bmod 4), a \equiv 2(\bmod 4)$, consider $\gamma=\left(\theta^{2}+\theta+1\right.$ $+\sqrt{\theta+a}) / 2 \in L$. Then we see that L is an unramified quadratic extension of K as in the above (a). Thus we have $2 \mid h(K)$.

Proof of Theorem A'. (I) As $q \mid 2 m+3$ and $3 \nmid m$, we have $(q, 6)$ $=1$. If $q \mid r(\theta)$, then we have $q \mid 2^{4} D(\theta)$ in virtue of $D_{K}(\theta)=r(\theta)^{2} D(K)$, so that we have $q=3$ in virtue of $2^{4} D_{K}(\theta)=2^{4} D_{f}=2^{4}\left(m^{2}+3 m+9\right)$ $=\left((2 m+3)^{2}+27\right)^{2}$ and $q \mid 2 m+3$. This contradicts to the fact $(q, 6)=1$. Hence we have $(r(\theta), q)=1$ and consequently the condition (i) in Theorem A is satisfied. Since $f(x) \equiv(x+2)(x-1)(x-m-1)(\bmod 2 m+3)$ and $q \mid 2 m+3$, we have also
(**)

$$
f(x) \equiv(x+2)(x-1)(x-m-1) \quad(\bmod q)
$$

and any two of $-1,2,-m-1$ are not congruent $\bmod q$ in virtue of $q \neq 3$. Hence the condition (ii) in Theorem A is satisfied. (iv) in Theorem A is also satisfied as $-f(-2)=2 m+3=u^{2}$ is odd. We may put $a=2, b=-1$ in (i) in virtue of $(* *)$ and $m \equiv 3(\bmod 4)$, so that we have $((a-b) / q)=(3 / q)$. Then we have $((a-b) / q)=-1$ in virtue of $q=12 s \pm 5$. Thus (iii) in Theorem A is satisfied.
(II) It is clear that $f(x) \equiv(x+3)\left(x^{2}-(m+3) x+2 m+6\right)(\bmod 6 m$ +19). As K / Q is Galois and $q \mid 6 m+19, q \neq 7$, we have (*) immediately.

Hence (ii) in Theorem A is satisfied. If $q \mid r(\theta)$, then we have $q \mid 6^{4} D_{K}(\theta)$ in virtue of $D_{K}(\theta)=r(\theta)^{2} D(K)$, so that we have $q=7$ in virtue of $6^{4} D_{K}(\theta)$ $=6^{4} D_{f}=6^{4}\left(m^{2}+3 m+9\right)^{2}=\left((6 m+19)^{2}+7^{3}\right)^{2}$ and $q \mid 6 m+19$. However this contradicts to the fact $q \neq 7$. Hence we have $(r(\theta), q)=1$, so that the condition (i) in Theorem A is satisfied. We may put $a=3$ in virtue of $m \equiv 1(\bmod 4)$. Then (iii) in Theorem A is satisfied in virtue of $((3-b) / q)=-1$. As $-f(-3)=6 m+19=v^{2}$ is odd, (iv) in Theorem A is also satisfied.
3. Proof of Theorem B. It is clear that F is totally real as $D_{g}>0$ with $n \geqq 6$ and that F is non Galois as $D_{g}=\left(n^{2}+n-3\right)^{2}-32$ can not be a square with $n \geqq 6$. It is also clear that $\delta, \delta+1$ are units of F. We shall show that $M=F(\sqrt{\delta+1})$ is a quadratic extension of F. In fact, if $\sqrt{\delta+1}=\nu \in F$, then $\delta+1=\nu^{2}$ and $\nu \in E_{F}$. This contradicts to the fact $E_{F}=\langle \pm 1\rangle \times\langle\delta, \delta+1\rangle$ (see [3]). Therefore $M=F(\sqrt{\delta+1})$ is a quadratic extension of F.

As all roots of $g(x)$ are >-1 for $n \geqq 6, \delta+1$ is totally positive. Hence no infinite prime is ramified in M.

As $\delta+1 \in E_{F}$, no prime divisor of F except (2) is ramified in M. Consider $\xi=\left(\delta^{2}+\delta+\sqrt{\delta+1}\right) / 2 \in M$. It is easily verified that $\xi \in \mathcal{O}_{M}$ in virtue of $n \equiv 3(\bmod 4)$. We have $(D(\xi),(2))=1$ as $D(\xi)=\delta+1 \in E_{F}$. Hence (2) is also unramified, and M is an unramified quadratic extension of F so that we obtain $2 \mid h(F)$. The proof is completed.

References

[1] H. Cohn: A device for generating fields of even class number. Proc. Amer. Math. Soc., 7, 595-598 (1956).
[2] K. Uchida: On a cubic cyclic field with discriminant 163^{2}. J. Number Theory, 8, 346-349 (1976).
[3] M. Watabe: On certain cubic fields. III. Proc. Japan Acad., 59A, 260-262 (1983).

