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1. We shall use the following notations" For an algebraic num-
ber field k, the discriminant, the class number, the ring of integers
and the group of units are denoted by D(k), h(k), and E respec-
tively. The discriminant of an algebraic integer p will be denoted
by D(p) and the discriminant of a polynomial h(x) e Z(x) by D. (./.)
means the quadratic residue symbol.

The purpose of this note is to give some devices f generating
cubic fields of certain types with even class numbers. We shall prove"

Theorem A. Let K=Q(), Irr ( Q) f(x) x mx- (mA- 3)x
-1, m e z with odd m and m>1. Suppose there exists a prime number
q satisfying

( ) (r(t?), q)--l, where Dx(6)=r(6)D(K),
(ii) f(x)----(x+a)(x+b)(x+c) (mod q), where any two of .a, b, c

e Z are not congruent mod q, a>0, a0, m, m+ 1 (mod 4),
(iii) ((a- b)/q) 1,
(iv) -f(- a) =.,a +ma-(m+ 3)a+ 1 t for some odd t e Z.

Then we have 21 h(K).
Theorem A’. Let K= Q(t?), Irr (t? Q) f(x) x-mx-(m+ 3)x

-1, m e z with 3Xm and ml.
(I) Suppose m=_3 (mod4) and 2m+3=u for some u eZ. If

2m+3 has a prime factor q such that q=12s_5, then we have 21 h(K).
Examples" 11, 23. It is easy to see that there are infinitely many m’s
satisfying this condition.

(II) Suppose m-1 (md4). Let q be a prime factor (:/:7) of
6m+19. Then we have
( ) f(x)----(x+3)(x+b)(x+c) (mod q), where b3, c3 (md q).

If 6m+19=v for some v eZ and ((3-b)/q)=-I in (.), we have
2]h(K). Examples" m=17, 25.

Theorem B. Let F=Q(5), Irr (5 Q)=g(x)=x-nx-(n+l)x-1,
u e Z with n--3 (mod4) but n:/:9, +_1, ++_2, +_3, +4, +__5, -6. If Dq
is square free, then we have 21h(F). Examples" n=7, 11, 15.

2. Proof of Theorem A. As /D=m+3m+9 eZ, K/Q is to-
tally real and Galois. In virtue of (i), (ii), (q) is completely decomposed
in K in the form (q) qq.q, where q (q, t + a), q (q, t + b),
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q--(q, t?+c) are different prime ideals of first degree of K.
We shall show that L=K(/O+a) is a quadratic extension of K.

In act, if /t+a=a e K, then we have t+a=a, which yields a-b--o
(mod q) in virtue of q.=(q,O+b). We have also a-b=a’ (mod q) and
a-b--o’’ (mod q’). Then we have ((a- b) /q)= l, which contradicts
to (ii). Thus L--K(4’t?+a) is a quadratic extension of K.

Asmisodd, we have m--l(mod4) or m----3(mod4). We have
a--3 (mod4) when m--1 (mod4) in virtue of (iv) and a0,
(mod 4), and we have also a2 (mod 4) when m=3 (mod 4) in virtue

o (iv) and a0, m (mod 4). Thus we have only to consider the case
ml (mod 4), a----3 (mod 4) and the case m-----3 (mod 4), a--2 (mod 4).

It is easy to see that all roots of f(x)are -2, so that 0/a is
totally positive in virtue of a0, and a----3 (mod 4) or a-----2 (mod 4).
Thus infinite primes of K is unramified in L.

As -f(-a)=N,:/ (+a)=t, no prime divisor of K except (2) is

ramified. We shall show that (2) is also unramified in L.
(a) In the ease m----1 (mod 4), a--3 (mod 4), we consider o-(

+t?+2+/-+a)/2 L. We have o e (, since Tr/ (o)--t+/+2
and N/(o)=((O+t+2y-(t+a))/4 e ( in virtue o m-1 (mod 4),
a--3 (mod 4). The discriminant D(o) is t+a and we have (D(o), (2))
=1 as -f(-a)=N/q(t+a)= t is odd. Hence (2) is unramified in L.
We have thus an unramified quadratic extension L o K and cnse-
quently we have 2 Ih(K).

(b) In the case m=3 (mod 4), a----2 (m.d 4), consider r=(0+0+l
+/9+a)/2eL. Then we see that L is an unramified quadratic ex-

tension of K as in the above (a). Thus we have 21h(K).
Proof of Theorem A’. (I) As q12m+3 and 3.m, we have (q, 6)

=1. If q[r(0), then we have q l2*D(t?) in virtue of D(t)=r(0yD(K),
so that we have q= 3 in virtue of 2*D(O) 2D 2*(m+ 3m+9)
=((2m+3)+27) and q]2m+3. This contradicts to the fact (q, 6)=1.
Hence we have (r(0), q)= 1 and consequently the condition (i) in Theo-
rem A is satisfied. Since f(x)-(x+2)(x-1)(x-m-1) (mod2m+3)
and q l2m+ 3, we have also

(**) y(x)--(x/2)(x-1)(x-m-1) (mod q),

and any two of-1, 2, -m-1 are not congruent mod q in virtue of

q=/=3. Hence the condition (ii) in Theorem A is satisfied. (iv) in

Theorem A is also satisfied as -f(-2)=2m+3=u is odd. We may

put a=2, b=-1 in (i) in virtue of (**) and m--3 (mod 4), s that we

have ((a-b)/q)=(3/q). Then we have ((a-b)/q)=--I in virtue of

q-12s_+5. Thus (iii) in Theorem A is satisfied.

(II) It is clear that f(x)-- (x + 3)(x- (m+3)x+2m+6) (mod 6m
+19). As K/Qis Galois and q[6m+19, qve7, we have (.) immediately.
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Hence (ii) in Theorem A is satisfied. If q lr(t), then we have q 16D(0)
in virtue of D(O)=r(0)D(K), so that we have q=7 in virtue of 6D(0)
--64Ds--64(m2+3m+9)2= ((6m+19)2+78) and ql6m+19. However
this contradicts to the fact q=/=7. Hence we have (r(0), q)= 1, so that
the condition (i) in Theorem A is satisfied. We may put a--3 in virtue
of m-----1 (mod 4). Then (iii) in Theorem A is satisfied in virtue of
((3-b)/q)=-l. As -f(-3)=6m+19=v is odd, (iv) in Theorem A
is also satisfied.

3. Proof of Theorem B. It is, clear that F is totally real as

D>0 with n>=6 and that F is non Galois as D= (n+n-3)2-32 can
not be a square with n>=6. It is also clear that , +1 are units of F.
We shall show that M=F(/+I) is a quadratic extension of F. In
fact, if /+1=, e F, then 3+ 1 =,2 and, e E. This contradicts to the
fact EF=(+_I} (, +1} (see [3]). Therefore M F(/3+1) is a
quadratic extension of F.

As all roots of g(x) are :>-1 for n6, /1 is totally positive.
Hence no infinite prime is ramified in M.

As 3+ 1 e E, no prime divisor of F except (2) is ramified in M.
Consider -(++/+1)/2 e M. It is easily verified that e ( in
virtue of n--3 (mod 4). We have (D(), (2))=1 as D()=+I eel.
Hence (2) is also unramified, and M is an unramified quadratic ex-
tension of F so that we obtain 21h(F). The proof is completed.
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