109. On a Question Posed by Huckaba-Papick. II

By Ryûki MATSUDA

Department of Mathematics, Ibaraki University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1983)

1. Introduction. This is a continuation of [5]. As in the introduction of [5], let R be an integral domain with the quotient field K, and let x be an indeterminate. By c(f) we denote the ideal of Rgenerated by the coefficients of f for an element f of R[x]. We denote the subset $\{f \in R[x]; c(f)^{-1}=R\}$ of R[x] by U, where $c(f)^{-1}=\{a \in K; ac(f) \subset R\}$. Let $\mathcal{P}(R)$ be the set of prime ideals of R which are minimal prime ideals over (a: b) for some elements a, b of R. Huckaba-Papick ([2]) posed the following questions:

Questions ([2, Remark (3.4)]). (a) If R_P is a valuation ring for each $P \in \mathcal{P}(R)$, is $R[x]_U$ a Prüfer ring?

(b-1) If $R[x]_{v}$ is a Bezout ring, are the prime ideals of $R[x]_{v}$ extended from prime ideals of R?

(b-2) If $R[x]_v$ is a Prüfer ring, are the prime ideals of $R[x]_v$ extended from prime ideals of R?

(c) If $R[x]_{U}$ is a Prüfer ring, is it a Bezout ring?

In [4], we answered to the question (b-1) in the affirmative, and showed that questions (b-2) and (c) are equivalent. In [5], we answered to the question (c) in the affirmative. The purpose of this paper is to give a negative answer to the question (a) in proving the following result:

Proposition. There exists an integral domain R such that R_P is a valuation ring for each $P \in \mathcal{P}(R)$ and that $R[x]_U$ is not a Prüfer ring.

2. Proof of Proposition. Lemma 1. If $R[x]_U$ is a Prüfer ring, then the prime ideals of $R[x]_U$ are extended from prime ideals of R.

Proof. By [5, Theorem 1], $R[x]_U$ is a Bezout ring. By [4, Theorem 1], the prime ideals of $R[x]_U$ are extended from prime ideals of R.

Throughout the rest of the paper, we denote by R the integral domain $Z[2u, 2u^2, 2u^3, \cdots]$ where u is an indeterminate over Z, and by K the quotient field of R (cf. [1, §25, Exercise 21]).

Lemma 2 ([3, II, a part of Example 2]). (1) The maximal ideal $M=(2, 2u, 2u^2, \cdots)$ of R is a minimal prime ideal over the principal ideal (2).

- (2) R_{M} is a valuation ring.
- (3) M is the only maximal ideal of R containing 2.
- (4) R is integrally closed.

(5) R is 2-(Krull)-dimensional.

Lemma 3. (1) The quotient ring of R with respect to the multiplicative subset of R generated by 2 is the subring Z[1/2, u] of Q[u]. (Q is the field of rational numbers.)

(2) Z[1/2, u] is a unique factorization ring.

(3) Let p be an odd prime number. Then (p) is a prime ideal of R.

Proof. (1) The proof is obvious. (2) Since Z[1/2] is a quotient ring of Z, it is a unique factorization ring. Since Z[1/2, u] is a polynomial ring over Z[1/2], it is a unique factorization ring. (3) Let $r_1r_2 \in (p)$ for elements $r_1, r_2 \in R$. Since pZ[u] is a prime ideal of Z[u], we see that either r_1 or r_2 , say r_1 , belongs to pZ[u]. We have $r_1 = pF$ for some $F \in Z[u]$. Since p is an odd number, it follows $F \in R$. Hence (p) is a prime ideal of R.

Lemma 4. Let M be a prime ideal of R of height 2, containing an odd prime number p. Then we have $M \notin \mathcal{P}(R)$.

Proof. We have $M \not\ni 2$. By Lemma 3, (1), MZ[1/2, u] is a prime ideal of Z[1/2, u] of height 2. By Lemma 3, (2), we have $MZ[1/2, u] \supseteq pZ[1/2, u]$. We choose $r \in M - (p)$, and set f = p + rx. Let $k \in c(f)^{-1}$ for an element $k \neq 0$ of K. We have $pk = r_1$ and $rk = r_2$ for $r_1, r_2 \in R$. Hence $r_1r = pr_2$. By Lemma 3, (3), we have $r_1 \in (p)$. It follows that $k \in R$, and hence $c(f)^{-1} = R$. Since $f \in MR[x]$, we have $M \notin \mathcal{P}(R)$ by [6, Theorem E].

Lemma 5. R_P is a valuation ring for each $P \in \mathcal{P}(R)$.

Proof. Let M be a maximal ideal of R containing P. By Lemma 2, (3), we have the following three cases: (1) $M = (2, 2u, 2u^2, \cdots)$, (2) $M \cap Z = 0$, and (3) M contains an odd prime number p. Case (1): R_p is a quotient ring of R_M . Hence R_p is a valuation ring by Lemma 2, (2). Case (2): R_p is a quotient ring of Q[u] with respect to its prime ideal PQ[u]. It follows that R_p is a valuation ring. Case (3): If height P > 1, then we have height P = 2 and P = M by Lemma 2, (5). By Lemma 4, it follows $P \notin \mathcal{P}(R)$, which is a contradiction. Hence height $P \le 1$. By Lemma 3, (1), we see that PZ[1/2, u] is a prime ideal of Z[1/2, u] of height ≤ 1 . By Lemma 3, (2), $Z[1/2, u]_{PZ[1/2, u]}$ is a valuation ring.

Lemma 6. $R[x]_U$ is not a Prüfer ring.

Proof. R in an integrally closed ring (Lemma 2, (4)). We set $M=(2, 2u, 2u^2, \cdots)$, and set f=2+2ux. By Lemma 2, (1), we have $M \in \mathcal{P}(R)$. fK[x] is a prime ideal of K[x]. We set $fK[x] \cap R[x]=Q$. By [6, Theorem B], we have $Q=c(f)^{-1}fR[x]$. Let $k \in c(f)^{-1}$ for an element $k \neq 0$ of K. We have $2k=r_1$ and $2uk=r_2$ for $r_1, r_2 \in R$. It follows $ur_1=r_2$, and hence $r_1 \in M$. Therefore we have $k \in Z[u]$ and kf

 $\in MR[x]$. We have shown $Q \subset MR[x]$. By [6, Theorem E], we have $Q \cap U = \emptyset$. Hence $QR[x]_U \cap R = Q \cap R$. Since $Q \cap R = 0$, it follows $QR[x]_U \supseteq (QR[x]_U \cap R)R[x]_U$. By Lemma 1, $R[x]_U$ is not a Prüfer ring. Lemmas 5 and 6 complete the proof of Proposition.

References

- [1] R. Gilmer: Multiplicative Ideal Theory. Marcel Dekker, New York (1972).
- [2] J. Huckaba and I. Papick: A localization of R[x]. Canad. J. Math., 33, 103-115 (1981).
- [3] H. Hutchins: Examples of Commutative Rings. Polygonal Publishing House, New Jersey (1981).
- [4] R. Matsuda: On a Huckaba-Papick problem. Sûgaku, 35, 263-264 (1983) (in Japanese).
- [5] —: On a question posed by Huckaba-Papick. Proc. Japan Acad., 59A, 21-23 (1983).
- [6] H. Tang: Gauss' lemma. Proc. Amer. Math. Soc., 35, 372-376 (1972).