106. Boolean Valued Analysis and Type I AW*-Algebras

By Masanao Ozawa

Department of Information Sciences, Tokyo Institute of Technology

(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1983)

1. Introduction. The structure theory of type I AW^* -algebras was instituted by Kaplansky [3] as a purely algebraic generalization of the theory of type I von Neumann algebras. However, his theory was not completed as he stated [3; p. 460], "One detail has resisted complete solution thus far: the uniqueness of the cardinal number attached to a homogeneous AW^* -algebra of type I." The above cardinal uniqueness problem has been open for 30 years (cf. [1; pp. 88, 111, 118 Exercise 10]) and Kaplansky [4; p. 843] conjectured that the answer is negative.

In this note, we shall outline a negative answer to this problem. Our method is due to Boolean valued analysis recently developed by Takeuti [7]–[9] and Ozawa [5], and the construction of the counterexample of the cardinal uniqueness problem will be reduced to P. J. Cohen's forcing argument (cf. [2], [10]) developed in the field of mathematical logic. Our argument also includes a complete classification of type I AW^* -algebras in terms of the cardinal numbers in Scott-Solovay's Boolean valued universe of set theory (cf. [10]). The proofs of the results in this note will be published in the forthcoming paper [6] with more detailed treatment. For the terminology and the basic theory of AW^* -algebras we shall refer to Berberian [1].

2. Boolean valued universe of sets. Let *B* be a complete Boolean algebra. Scott-Solovay's Boolean valued universe $V^{(B)}$ is defined by $V^{(B)} = \bigcup_{\alpha \in On} V_{\alpha}^{(B)}$, where $V_{\alpha}^{(B)}$ is defined by transfinite induction as follows: $V_{0}^{(B)} = \emptyset$ and

 $V_{\alpha}^{(B)} = \{u \mid u : \text{dom } (u) \rightarrow B \text{ and } \text{dom } (u) \subseteq \bigcup_{\beta < \alpha} V_{\beta}^{(B)}\}.$ For any $u, v \in V^{(B)}$, the Boolean values $||u \in v||$ and ||u = v|| are defined (cf. [10; § 13]), and then we define the Boolean value $||\varphi(a_1, \dots, a_n)||$ for any formula φ of set theory with $a_1, \dots, a_n \in V^{(B)}$ in the obvious way. There is a canonical embedding $u \rightarrow \check{u}$ of the universe V of sets into $V^{(B)}$ such that $||\check{u} \in \check{v}||$ ($||\check{u} = \check{v}||$) equals 1 if $u \in v$ (u = v) and equals 0 otherwise. The basic principles of Boolean valued analysis is the following transfer principle.

Theorem 1 (Scott-Solovay, cf. [10]). If φ is a theorem of ZFC then $\|\varphi\|=1$ is also a theorem of ZFC.

3. Hilbert spaces in $V^{(B)}$. We define real numbers as Dedekind

cuts of rational numbers. Let

 $C^{(B)} = \{a \in V^{(B)} | \|a \text{ is a complex number}\| = 1\},\$

and

No. 8]

 $C_{\infty}^{(B)} = \{a \in C^{(B)} | {}^{\exists}M \in R, |||a| < \check{M}|| = 1\}.$

Let Ω be the Stone representation space of B. Let $B(\Omega)$ be the *-algebra of complex valued Borel functions on Ω , $N(\Omega)$ be the ideal of $B(\Omega)$ consisting of functions vanishing outside a meager set. Let $C(\Omega)$ be the algebra of all complex valued continuous functions on Ω . Then by the similar argument as in [7; Chapter 2, §2] we have the following identifications which preserves algebraic and order structure in the obvious way.

Theorem 2. $C^{(B)} \cong B(\Omega)/N(\Omega)$ and $C^{(B)}_{\infty} \cong C(\Omega)$.

Let Z be a commutative AW^* -algebra. Then the set B of all projections in Z forms a complete Boolean algebra and we have $Z \cong C(\Omega)$ where Ω is the Stone representation space of B (cf. [1; §7]). An AW^* -module X over Z is a Z-module with Z-valued inner product $\langle \cdot, \cdot \rangle$ which satisfies some additional axioms (cf. [4]). A base for an AW^* -module X is a family $\{e_i\}$ such that (i) $\langle e_i, e_i \rangle = 1$ for any i, (ii) $\langle e_i, e_j \rangle = 0$ if $i \neq j$, (iii) for any $x \in X$, if $\langle x, e_i \rangle = 0$ for all i then x=0. For a cardinal number α , an AW^* -module X is called α -homogeneous if it has a base with cardinality α . Let $l^2(S)$ be the set of square summable functions on a set S, i.e.,

$$\begin{split} l^2(S) = &\{ \xi \,|\, \xi : S \to C \text{ and } \sum_{s \in S} |\xi(s)|^2 < \infty \}.\\ \text{Consider } l^2 \text{-spaces in } V^{(B)}. \quad \text{For any } S \in V^{(B)}, \text{ let} \\ l^2(S)^{(B)} = &\{ \xi \in V^{(B)} \mid || \xi \in l^2(S) || = 1 \}, \end{split}$$

and let

 $l^{2}(S)^{(B)}_{\infty} = \{ \xi \in l^{2}(S)^{(B)} \mid \exists M \in \mathbf{R}, \|\sum_{s \in S} |\xi(s)|^{2} < \check{M}\| = 1 \}.$

Then obviously $l^2(S)^{(B)}$ is a Hilbert space in $V^{(B)}$, i.e., $||l^2(S)|$ is a Hilbert space ||=1. For any $S \in V^{(B)}$, denote by card $(S)_B$ the cardinality of S in $V^{(B)}$. The following theorem states that the class of all cardinal numbers in $V^{(B)}$ is a complete system of invariants of AW^* -modules over Z.

Theorem 3. (1) For any $S \in V^{(B)}$, $l^2(S)^{(B)}_{\infty}$ is an AW^* -module over Z. (2) For any S, $S' \in V^{(B)}$, $l^2(S)^{(B)}_{\infty} \cong l^2(S')^{(B)}_{\infty}$ if and only if card $(S)_B = \text{card } (S')_B$. (3) For any AW^* -module X over Z, there is a unique cardinal number α in $V^{(B)}$ (i.e., $\|\alpha$ is a cardinal number $\|=1$) such that $X \cong l^2(\alpha)^{(B)}_{\infty}$.

4. A classification of type I AW^* -algebras. Denote by $\mathcal{L}(H)$ the algebra of all bounded operators on a Hilbert space H. Let H be a Hilbert space in $V^{(B)}$, i.e., ||H| is a Hilbert space ||=1. Let $\mathcal{L}(H)^{(B)}$ = $\{x \in V^{(B)} | ||x \in \mathcal{L}(H)||=1\}$ and let $\mathcal{L}(H)^{(B)}_{\infty} = \{x \in \mathcal{L}(H)^{(B)} | \exists M \in \mathbb{R}, |||x|| \le \tilde{M} ||=1\}$, where ||x|| is the bound of an operator x. Let π be an

M. OZAWA

automorphism of *B*. Then π can be extended to $\pi: V^{(B)} \to V^{(B)}$ such that for any formula $\varphi(a_1, \dots, a_n)$ with $a_1, \dots, a_n \in V^{(B)}$,

 $\|\varphi(\pi(a_1), \cdots, \pi(a_n))\| = \pi(\|\varphi(a_1, \cdots, a_n)\|)$

(cf. [10; Theorem 19.3]). Two cardinal numbers α and β in $V^{(B)}$ are called *congruent* if there is an automorphism π of B such that $\|\alpha = \pi(\beta)\| = 1$. The following theorem gives a complete solution of the classification of type I AW*-algebras.

Theorem 4. Let Z be a commutative AW*-algebra and B the complete Boolean algebra of projections in Z. Then we have the following: (1) For any non-zero Hilbert space H in $V^{(B)}$, $\mathcal{L}(H)^{(B)}_{\infty}$ is a type I AW*-algebra with center isomorphic to Z. (2) For any type I AW*-algebra A with center Z, there is a cardinal number α in $V^{(B)}$ such that $A \cong \mathcal{L}(l^2(\alpha))^{(B)}_{\infty}$. (3) For any S, $S' \in V^{(B)}$, $\mathcal{L}(l^2(S))^{(B)}_{\infty} \cong \mathcal{L}(l^2(S'))^{(B)}_{\infty}$ if and only if card $(S)_B$ and card $(S')_B$ are congruent. (4) An AW*algebra A is α -homogeneous if and only if $A \cong \mathcal{L}(l^2(\check{\alpha}))^{(B)}_{\infty}$.

In the Boolean valued model theory, we say that cardinal numbers are *absolute* in $V^{(B)}$ whenever, $\|\check{\alpha}$ is a cardinal number $\|=1$ if and only if α is a cardinal number. The following theorem is an immediate consequence of Theorem 4.

Theorem 5. Let Z be a commutative AW*-algebra and let B be the complete Boolean algebra of projections of Z. Then the cardinal numbers in $V^{(B)}$ are absolute if and only if for any homogeneous AW*algebra A with center isomorphic to Z there is a unique cardinal number α such that A is α -homogeneous.

By the above theorem any complete Boolean algebra B for which the cardinal numbers are not absolute in $V^{(B)}$ yields a counterexample of the uniqueness of the cardinality attached to a homogeneous AW^* algebra. By the method of forcing we have the following.

Theorem 6. For any pair of infinite cardinal numbers α and β , there is an AW*-algebra which is α -homogeneous and simultaneously β -homogeneous.

Sketch of Proof. It is known [2; Lemma 19.9] that there is a notion of forcing $\langle P, \leq \rangle$ such that $M[G] \models \operatorname{card} (\alpha^{M}) = \operatorname{card} (\beta^{M})$ for any standard transitive model M of ZFC and any generic filter G of P over M. Let B be the Boolean algebra of all regular open subsets of P. Then $\|\operatorname{card} (\check{\alpha}) = \operatorname{card} (\check{\beta})\| = 1$ in $V^{(B)}$. Thus by Theorem 4.(3), $\mathcal{L}(l^{2}(\check{\alpha}))_{\infty}^{(B)} \cong \mathcal{L}(l^{2}(\check{\beta}))_{\infty}^{(B)}$. This shows that an AW^{*} -algebra $\mathcal{L}(l^{2}(\check{\alpha}))_{\infty}^{(B)}$ is α -homogeneous and simultaneously β -homogeneous. Q.E.D.

References

- [1] Berberian, S. K.: Baer *-Rings. Springer, Berlin (1972).
- [2] Jech, T.: Set Theory. Academic Press, New York (1978).

No. 8] Boolean Valued Analysis and Type I AW*-Algebras

- [3] Kaplansky, I.: Algebras of type I. Ann. of Math., 56, 460-472 (1952).
- [4] ——: Modules over operator algebras. Amer. J. Math., 75, 839-858 (1953).
 [5] Ozawa, M.: Boolean valued interpretation of Hilbert space theory. J. Math.
- Soc. Japan, 35, 609-627 (1983). [6] ——: A classification of type I AW*-algebras and Boolean valued analysis
- (preprint).
- [7] Takeuti, G.: Two Applications of Logic to Mathematics. Iwanami and Princeton University Press, Tokyo and Princeton (1978).
- [8] ——: A transfer principle in harmonic analysis. J. Symbolic Logic, 44, 417-440 (1979).
- [9] —: Von Neumann algebras and Boolean valued analysis. J. Math. Soc. Japan, 35, 1-21 (1983).
- [10] Takeuti, G. and Zaring, W. M.: Axiomatic Set Theory. Springer, Heidelberg (1973).