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1. Summary. The Toda equation
(1.1) q--Pn-l--Pn, P-----Pn(qn--qn+), n--0, +_1, +_2,...
admits the special rational solution
(1.2) q (log P/P )’, p (log P+)" t/4
where

d(n) f(n)

(1.3) Pn , (t--a,)= , Pn,t(n)-
=t j=0

are the polynomials of degree d(n)-n(n-1)/2 with integral coefficients
(P,0=l, P,():/:O, f(n)--[n(n-1)/6]). These polynomials were intro-
duced by A. I. Yablonskii [1] and A. P. Vorobiev [2] who. showed that
q satisfies the Painlev-II equation
(1.4) qT=2q+ tq t_ n.
All zeros of Pn are simple, P and P/ have no co.mmon zero. So. q
has n simple poles and p has n(n+ 1)/2 double poles.

A sharp estimate for the maximal mo.dulus o.f these poles is ob-
tained. A max {I a, I; 1_k_d(n)} satisfies
(1.5) nV_An+_4nm n=0, 1, 2, ....

2. Recurrence relation. If we define the rational functions q
and p by the recurrence relation
(2.1) qo =0, Po-- --t/4,
(2.2) qn=(2n--1)/4Pn_--qn_, pn=--(pn_+qn+t/2),
(2.3) q-n----q, P-n=Pn-, n=l, 2, 3,
then

Theorem 2.1. {qn, Pn} satisfies the Toda equation (1.1), q satis-

fies the Painlevg-II equation (1.4) and p satisfies
(2.4) pnp’’--p’’/2q-ap+ tp+ (2n+ 1)/32 0

for every integral n.

3. Yablonskii.Vorobiev’s polynomials. The rational func-
tions P are determined uniquely by the relation
(3.1) pn=-PP/2/4Pn+I, n=0, +_1, +_2,
with initial condition
(3.2) P0-P 1.
Integrating the Toda equation with respect to n we have (1.2). So



No. 8] The Rational Solution of the Toda Equation 359

we have
Theorem 3.1 (A. P. Vorobiev [2]).

t2 It(3.3) PP/. tP/+4P+ 4P/P/.
Using (2.4) and (3.3) we can show
Theorem 3.2. P are the polynomials with properties stated in

1.
4. Laurent expansion at . The Laurent expansions at

for q and p are convergent in [t]>max{A, A+} and in
respectivery. Inserting the expressions

(4.1) =q+nt- (--1)qn,t-(+
j=O

(4.2) $=--p--t/4= (--1)Pn,t-(+
j=O

into the Toda equation (1.1) we have a recurrence relation for the
coefficients which gives

Theorem 4.1.
(4.3) qn+,q,O,

n=0, 1, 2, ..., ]=0, 1, 2, ....
From these inequalities it follows

(4.4) A+A)A=O, n=3, 4, 5,
5. Estimate from below for A.

_
has a different expression

as Laurent series at .
d(n) d(n)

(5.1) $_= (t-- a,)- (]+ 1) a,t-(+.
k=l j=O k=l

Comparing this with (4.2) we have
d(n)

(5.2) Pn-,/(3]+ 1) (-- an,)
k=l

where the righthand side does not exceed d(n)A so we have
Theorem 5.1.

(5.3) A(p_,/(3]+l)d(n))/, n=3, 4, 5, ..., ]=1,2, 3, ....
Especially
(5.4) A((n-2)(n+l))/, n=3, 4, 5, ....

Since we know that
(5.5) p_,,=2n(n-1)(n(n--1)-2).

6. Estimate from above for A. From the results of 4
(6.1) 0= -n-tq-l, $=l+4t-p.
can be expressed as a convergent power series o (-t)- with non
negative coefficients in [t]A+. Rewriting the recurrence relation
(2.1) and (2.2) we have
(6.2) $0=0, (0=0),
(6.3) n0=(2n- 1)$,_ / (1 $_)- (n-1)0_,

$=4n(-t)-(l+O)-n_, n=l, 2, 3, ....
Estimating these recurrence relations inductively we have
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Theorem 6.1. Define
(6.4) T(0)-- (4n(0))/ where (t)--- (1 +t)O-(1-O)-for any fixed t (0t1). Then we have
(6.5) A+_T(t),
,(6.6) I(t)l_2/(1-t), 1lS(t)l_t for ltl_T()
for any n_l.

Since min0<< (t)=(v-2)=(ll+5J-)/2 then the best result
is obtained when we choose t= J--2. Now we arrive at our main
theorem.

Theorem 6.2 (Main theorem).
(6.7) (n(n+3)y/<_A+<_(2(ll+5--))’/nv, n-----l, 2, 3, ....
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