103. On Poles of the Rational Solution of the Toda Equation of Painlevé-II Type

By Yoshinori Kametaka
Department of Applied Mathematics, Faculty of Engineering, Ehime University
(Communicated by Kôsaku Yosida, m. J. A., Oct. 12, 1983)

§ 1. Summary. The Toda equation

$$
\begin{equation*}
q_{n}^{\prime}=p_{n-1}-p_{n}, \quad p_{n}^{\prime}=p_{n}\left(q_{n}-q_{n+1}\right), \quad n=0, \pm 1, \pm 2, \cdots \tag{1.1}
\end{equation*}
$$

admits the special rational solution

$$
\begin{equation*}
q_{n}=\left(\log P_{n} / P_{n+1}\right)^{\prime}, \quad p_{n}=\left(\log P_{n+1}\right)^{\prime \prime}-t / 4 \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{P}_{n}=\sum_{k=1}^{d(n)}\left(t-a_{n, k}\right)=\sum_{j=0}^{f(n)} \boldsymbol{P}_{n, j} t^{d(n)-3 j} \tag{1.3}
\end{equation*}
$$

are the polynomials of degree $d(n)=n(n-1) / 2$ with integral coefficients $\left(P_{n, 0}=1, P_{n, f(n)} \neq 0, f(n)=[n(n-1) / 6]\right)$. These polynomials were introduced by A. I. Yablonskii [1] and A. P. Vorobiev [2] who showed that q_{n} satisfies the Painlevé-II equation

$$
\begin{equation*}
q_{n}^{\prime \prime}=2 q_{n}^{3}+t q_{n}+n \tag{1.4}
\end{equation*}
$$

All zeros of P_{n} are simple, P_{n} and P_{n+1} have no common zero. So q_{n} has n^{2} simple poles and p_{n} has $n(n+1) / 2$ double poles.

A sharp estimate for the maximal modulus of these poles is obtained. $\quad A_{n}=\max \left\{\left|\alpha_{n, k}\right| ; 1 \leq k \leq d(n)\right\}$ satisfies

$$
\begin{equation*}
n^{2 / 3} \leq A_{n+2} \leq 4 n^{2 / 3} \quad n=0,1,2, \cdots . \tag{1.5}
\end{equation*}
$$

§2. Recurrence relation. If we define the rational functions q_{n} and p_{n} by the recurrence relation

$$
\begin{gather*}
q_{0}=0, \quad p_{0}=-t / 4, \tag{2.1}\\
q_{n}=(2 n-1) / 4 p_{n-1}-q_{n-1}, \quad p_{n}=-\left(p_{n-1}+q_{n}^{2}+t / 2\right), \\
q_{-n}=-q_{n}, \quad p_{-n}=p_{n-1}, \quad n=1,2,3, \cdots \tag{2.3}
\end{gather*}
$$

then
Theorem 2.1. $\left\{q_{n}, p_{n}\right\}$ satisfies the Toda equation (1.1), q_{n} satisfies the Painlevé-II equation (1.4) and p_{n} satisfies

$$
\begin{equation*}
p_{n} p_{n}^{\prime \prime}-p_{n}^{\prime 2} / 2+4 p_{n}^{3}+t p_{n}^{2}+(2 n+1)^{2} / 32=0 \tag{2.4}
\end{equation*}
$$

for every integral n.
§3. Yablonskii-Vorobiev's polynomials. The rational functions P_{n} are determined uniquely by the relation
(3.1) $\quad p_{n}=-P_{n} P_{n+2} / 4 P_{n+1}^{2}, \quad n=0, \pm 1, \pm 2, \cdots$
with initial condition

$$
\begin{equation*}
P_{0}=P_{1}=1 \tag{3.2}
\end{equation*}
$$

Integrating the Toda equation with respect to n we have (1.2). So
we have
Theorem 3.1 (A. P. Vorobiev [2]).

$$
\begin{equation*}
P_{n} P_{n+2}=t P_{n+1}^{2}+4 P_{n+1}^{\prime 2}-4 P_{n+1} P_{n+1}^{\prime \prime} . \tag{3.3}
\end{equation*}
$$

Using (2.4) and (3.3) we can show
Theorem 3.2. P_{n} are the polynomials with properties stated in § 1.
§4. Laurent expansion at ∞. The Laurent expansions at ∞ for q_{n} and p_{n} are convergent in $|t|>\max \left\{A_{n}, A_{n+1}\right\}$ and in $|t|>A_{n+1}$ respectivery. Inserting the expressions

$$
\begin{align*}
& \tilde{q}_{n}=q_{n}+n t^{-1}=\sum_{j=0}^{\infty}(-1)^{j} q_{n, j} t^{-(3 j+4)} \tag{4.1}\\
& \tilde{p}_{n}=-p_{n}-t / 4=\sum_{j=0}^{\infty}(-1)^{j} p_{n, j} t^{-(3 j+2)} \tag{4.2}
\end{align*}
$$

into the Toda equation (1.1) we have a recurrence relation for the coefficients which gives

Theorem 4.1.

$$
\begin{align*}
& q_{n+1, j} \geq q_{n, j} \geq 0, \quad p_{n, j} \geq p_{n-1, j} \geq 0 \tag{4.3}\\
& n=0,1,2, \cdots, \quad j=0,1,2, \cdots .
\end{align*}
$$

From these inequalities it follows

$$
\begin{equation*}
A_{n+1}>A_{n}>A_{2}=0, \quad n=3,4,5, \cdots \tag{4.4}
\end{equation*}
$$

§5. Estimate from below for $A_{n} . \quad \tilde{p}_{n-1}$ has a different expression as Laurent series at ∞.

$$
\begin{equation*}
\tilde{p}_{n-1}=\sum_{k=1}^{d(n)}\left(t-a_{n, k}\right)^{-2}=\sum_{j=0}^{\infty}(j+1) \sum_{k=1}^{d(n)} a_{n, k}^{j} t^{-(j+2)} . \tag{5.1}
\end{equation*}
$$

Comparing this with (4.2) we have

$$
\begin{equation*}
p_{n-1, j} /(3 j+1)=\sum_{k=1}^{d(n)}\left(-a_{n, k}\right)^{3 j} \tag{5.2}
\end{equation*}
$$

where the righthand side does not exceed $d(n) A_{n}^{3 j}$ so we have
Theorem 5.1.
(5.3) $\quad A_{n} \geq\left(p_{n-1, j} /(3 j+1) d(n)\right)^{1 / 3 j}, \quad n=3,4,5, \cdots, \quad j=1,2,3, \cdots$. Especially

$$
\begin{equation*}
A_{n} \geq((n-2)(n+1))^{1 / 3}, \quad n=3,4,5, \cdots \tag{5.4}
\end{equation*}
$$

Since we know that

$$
\begin{equation*}
p_{n-1,1}=2 n(n-1)(n(n-1)-2) \tag{5.5}
\end{equation*}
$$

§6. Estimate from above for A_{n}. From the results of § 4

$$
\begin{equation*}
\hat{q}_{n}=-n^{-1} t q_{n}-1, \quad \hat{p}_{n}=1+4 t^{-1} p_{n} \tag{6.1}
\end{equation*}
$$

can be expressed as a convergent power series of $(-t)^{-1}$ with non negative coefficients in $|t|>A_{n+1}$. Rewriting the recurrence relation (2.1) and (2.2) we have

$$
\begin{gather*}
\hat{p}_{0}=0, \quad\left(\hat{q}_{0}=0\right), \tag{6.2}\\
n \hat{q}_{n}=(2 n-1) \hat{p}_{n-1} /\left(1-\hat{p}_{n-1}\right)-(n-1) \hat{q}_{n-1}, \\
\hat{p}_{n}=4 n^{2}(-t)^{-3}\left(1+\hat{q}_{n}\right)^{2}-\hat{p}_{n-1}, \quad n=1,2,3, \cdots .
\end{gather*}
$$

Estimating these recurrence relations inductively we have

Theorem 6.1. Define
(6.4) $\quad T_{n}(\theta)=\left(4 n^{2} \varphi(\theta)\right)^{1 / 3} \quad$ where $\varphi(\theta)=(1+\theta)^{2} \theta^{-1}(1-\theta)^{-2}$ for any fixed $\theta(0<\theta<1)$. Then we have

$$
(6.6)
$$

$$
\begin{gather*}
A_{n+2} \leq T_{n}(\theta), \tag{6.5}\\
\left|\hat{q}_{n}(t)\right| \leq 2 \theta /(1-\theta), \quad\left|\hat{p}_{n}(t)\right| \leq \theta \quad \text { for }|t| \geq T_{n}(\theta)
\end{gather*}
$$

for any $n \geq 1$.
Since $\min _{0<\theta<1} \varphi(\theta)=\varphi(\sqrt{5}-2)=(11+5 \sqrt{5}) / 2$ then the best result is obtained when we choose $\theta=\sqrt{5}-2$. Now we arrive at our main theorem.

Theorem 6.2 (Main theorem).
(6.7) $\quad(n(n+3))^{1 / 3} \leq A_{n+2} \leq(2(11+5 \sqrt{5}))^{1 / 3} n^{2 / 3}, \quad n=1,2,3, \cdots$.

References

[1] A. I. Yablonskii: Весці АН БССР, серыя фіз.-тэхн. Навук., no. 3 (1959).
[2] A. P. Vorobiev: On rational solutions of the second Painleve equation. Differencial'nye Uravnenija, 1, no. 1, 79-81 (1965) (in Russian).

