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1. Introduction. Let D={[zl<l} and let
D(z, r)= {w e

be the non-Euclidean disk of the non-Euclidean center z e D and the
non-Euclidean radius tanh-’ r, 0<r <1. For f holomorphic in D we
denote by f(D(z, r)) the image o.f D(z, r) by f, namely, f(D(z, r)) is the
set of w in the plane C= {[w[< c} such that there exists e D(z, r) with
w--f({). Simply, f(D(z, r)) is the projection of the Riemannian image
of D(z, r) by f. Let a(z, r, f) be the Euclidean area of f(D(z, r)).

A prototype o.f our present study is

Theorem 1 [3]. For f nonconstant and holomorphic in D to be
Bloch, namely,

sup (1-1zl)lf’(z)l<
z@D

it is necessary and sufficient that there exists r, 0<r<l, such that
sup (z, r, f)< oo.
zD

We shall consider two natural analogues of Theorem I for normal
meromorphic t?unctions in D in the sense o.f O. Lehto and K. I.
irtanen [2], and for Yosida unctions, namely, meromorphic func-
tions (in the. plane C) of K. Yosida’s class (A) [4].

A unction f meromorphic in D is said to be. normal there if

( 1 ) sup (1-lzl’)lf’(z)]/(1 /lf(z)D<
zD

while a function f meromorphic in C is said to. be Yosida if

( 2 ) sup If’(z)l/(l/If(z)D<

For f meromorphic in D we let fl(z, r, f) be the spherical area
the image f(D(z,r)) of D(z,r), 0r<l, contained in
while, or f meromorphic in C we let r(z, r, f)be the spherical area of
the image f(l(z, r)) of the Euclidean disk I(z, r)={w ;[w--zl<r}, r>O.
Again, the images are the projections of the Riemannian images.
Since C*, regarded as the Riemann sphere o.f diameter one, has the
spherical area , we have two. reasonable theorems, counterparts o
Theorem 1.

Theorem 2. For f nonconstant and meromorphic in D to. be
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normal there, it is necessary and sufficient that there exists r, Or 1,
such that
( 3 ) sup fl(z, r, f)

Theorem :. For f nonconstant and meromorphic in C to, be
Yosida there, it is necessary and s.ucient that there exists rO such
that
( 4 ) sup ’(z, r, f)<.

2. Proofs. To prove the necessity of (3) in Theorem 2 we let
o(f) be the supremum of (1). Then, for each r, 0<r<l,

fl(z, r, f)g I’{" If’() 12/(1 +lf()l)dd(5)
ddD(z,r)

o(f)f (1-[l)-dd=o(fYr/(1-r),
D(z,r)

where 5-+i. The second term of (5) is the area of the Riemannian
image o.f D(z, r) by f. To obtain (3) we have only to choose r with
r< (1 -b o(f))

For the proof o.f the sufficiency of (3) in Theorem 2 we shall make
use of

Lemma. For g meromorphic in the disk {Iz]R}, RO, suppose
that the spherical area ----(0, r, g) of the image of {Izlr} (rR) by g
is strictly less than . Then,

g’(0),/(1 +, g(0),) = -/{r(1-- -)}.
This is due to. J. Duresnoy [1, Lemma II, p. 216]; Duresnoy

makes .use of the Riemann sphere of diameter 2, while ours is of
diameter 1.

Suppose (3), and set
g(w) f((w+ z) / (1 + w)).

A calculation then yields that
[g’(0) I/(1 + g(0)I) (1

Since (0, r, g)--fl(z, r, f), we obtain (1), or, f is normal in D.
The proof of Theorem 3 is similar to that of Theorem 2 with minor

changes.
Suppose that (2) with the supremum a(f) holds. Then

(z, r, f)= II If’()l/(l+lf()]2)2ddrra(f)2<z,
dd(z,r)

i rl/a(f). Conversely, i (4) holds, then, for
h(w)=f(w+ z)

we have
h’(0)I/(1 +l h(0)

This, together with/(0, r, h)= ’(z, r, f), completes the proof of the suf-

ficienc o (4).
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Remark. In the proof of Theorem I [3] we adopt a result of T.
H. MacGregor. Since the Euclidean analogue of the above lemma of
Dufresnoy is available [1, Remark, p. 216], it is now easy to prove
Theorem 1 by the present method with small changes.
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