# 133. Semivariation and Operator Semivariation of Hilbert Space Valued Measures 

By Yûichirô Kakihara<br>Department of Mathematical Science, College of Science and Engineering, Tokyo Denki University<br>(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1983)

§ 1. Introduction. Let $\mathscr{S}$ and $\Re$ be a pair of Hilbert spaces. $B(\mathfrak{S})$ denotes the Banach space of all bounded linear operators on $\mathscr{F}^{5}$ with the identity 1 and the uniform norm $\|\cdot\|$, and $T\left(\mathfrak{S}_{\mathrm{C}}\right)$ denotes the set of all trace class operators on $\mathscr{S}$ with the trace $\operatorname{Tr}(\cdot)$ and the trace norm $\|\cdot\|_{r}$. Let $\boldsymbol{X}=S(\mathfrak{S}, \mathfrak{R})$ be the set of all Hilbert-Schmidt class operators from $\mathscr{S}_{\Sigma}$ into $\curvearrowleft$. For $x, y \in X$ define $[x, y]=x^{*} y \in T(\mathfrak{S}),\langle x, y\rangle_{x}$ $=\operatorname{Tr}[x, y]$ and $\|x\|_{X}=\langle x, x\rangle_{X}^{1 / 2}$. Then $\boldsymbol{X}$ becomes a Hilbert space with the inner product $\langle\cdot, \cdot\rangle_{x}$.

Let $(\Omega, \mathfrak{F})$ be a measurable space. We consider $\boldsymbol{X}$-valued measures defined on $\mathfrak{F}$. Denote by $c a(\Omega ; \boldsymbol{X})$ the set of all $\boldsymbol{X}$-valued bounded and countably additive, in the norm $\|\cdot\|_{x}$, measures on $\mathfrak{F}$. The operator semivariation of $\xi \in c a(\Omega ; \boldsymbol{X})$ is the function $\|\xi\|_{0}(\cdot)$ whose value on a set $A \in \mathfrak{F}$ is given by

$$
\begin{equation*}
\|\xi\|_{0}(A)=\sup \left\|\sum_{k=1}^{n} \xi\left(A_{k}\right) a_{k}\right\|_{X} \tag{1.1}
\end{equation*}
$$

where the supremum is taken for all finite measurable partitions $\left\{A_{1}, \cdots, A_{n}\right\}$ of $A$ and for all finite subsets $\left\{a_{1}, \cdots, a_{n}\right\} \subset B\left(\mathfrak{S}_{2}\right)$ with $\left\|a_{k}\right\|$ $\leqslant 1,1 \leqslant k \leqslant n$ (cf. Kakihara [2, Definition 3.1 and §5]). The semivariation of $\xi$ is the function $\|\xi\|(\cdot)$ whose value on a set $A \in \mathscr{F}$ is given in (1.1) by replacing $a_{k} \in B\left(\mathfrak{F}_{\mathcal{E}}\right)$ with $\lambda_{k} \in C$ (the complex number field) such that $\left|\lambda_{k}\right| \leqslant 1,1 \leqslant k \leqslant n$ (cf. Diestel and Uhl [1, pp. 2-4]). Then we have $\|\xi(A)\|_{X} \leqslant\|\xi\|(A) \leqslant\|\xi\|_{0}(A), A \in \mathfrak{F}$. In $\S 2$, we shall obtain the characterization of those measures $\xi \in c a(\Omega ; \boldsymbol{X})$ for which the following condition is satisfied :

$$
\begin{equation*}
\|\xi\|_{0}(A)=\|\xi(A)\|_{X}, \quad A \in \mathscr{Y} \tag{1.2}
\end{equation*}
$$

In $\S 3$, we consider the set $c a(\Omega ; \mathfrak{S c})$ of all $\mathscr{S}$-valued bounded and countably additive measures on $\mathfrak{F}$. The operator semivariation of $\xi \in c a\left(\Omega ; \mathfrak{S}_{2}\right)$ is the function $\|\xi\|_{0}(\cdot)$ whose value on a set $A \in \mathscr{F}$ is given by

$$
\begin{equation*}
\|\xi\|_{0}(A)=\sup \left\|\sum_{k=1}^{n} a_{k} \xi\left(A_{k}\right)\right\| \tag{1.3}
\end{equation*}
$$

where the supremum is taken as in the case of (1.1) and $\|\cdot\|$ is the norm of $\mathfrak{F}$. If we identify $\mathscr{S}_{2}$ with $S(\mathscr{S}, C)$, we see that the operator semi-
variations defined by (1.1) and (1.3) are identical for every $\xi \in c a(\Omega ; \mathfrak{F c})$. We also consider the following conditions for $\xi \in c a(\Omega ; \mathfrak{S c})$ :

$$
\begin{array}{ll}
\|\xi\|(A)=\|\xi(A)\|, & A \in \mathfrak{F} ; \\
\|\xi\|_{0}(A)=\|\xi(A)\|, & A \in \mathscr{F} . \tag{1.5}
\end{array}
$$

$\langle\cdot, \cdot\rangle$ denotes the inner product in $\mathscr{S}_{\mathrm{S}}$ and $U(\mathfrak{S g})$ the set of all unitary operators on $\mathscr{S}$. Notations introduced in this section will be used throughout this paper.
§ 2. Hilbert-Schmidt class operator valued measures. Our main theorem characterizing the condition (1.2) is stated as follows.

Theorem 2.1. An $\boldsymbol{X}$-valued measure $\xi \in c a(\Omega ; \boldsymbol{X})$ satisfies that $\|\xi\|_{0}(A)=\|\xi(A)\|_{X}$ for every $A \in \mathscr{F}$ if and only if it satisfies that $[\xi(A)$, $\xi(B)] \geqslant 0$ for every $A, B \in \mathfrak{F}$.

Proof. Assume the condition (1.2) for $\xi$. It suffices to show that $[\xi(A), \xi(B)] \geqslant 0$ for every disjoint $A, B \in \mathfrak{F}$. Let $A, B \in \mathfrak{F}$ be disjoint. Then we have

$$
\|\xi(A)+\xi(B)\|_{X}=\|\xi(A \cup B)\|_{X}=\|\xi\|_{0}(A \cup B) \geqslant\|\xi(A)+\xi(B) u\|_{X}
$$

for every $u \in U\left(\mathscr{S}_{C}\right)$. Hence

$$
\begin{aligned}
& \|\xi(A)+\xi(B)\|_{X}^{2}-\|\xi(A)+\xi(B) u\|_{X}^{2} \\
& \quad=2 \operatorname{Re}\left\{\langle\xi(A), \xi(B)\rangle_{X}-\langle\xi(A), \xi(B) u\rangle_{x}\right\} \\
& \quad=2 \operatorname{Re}\left\{\operatorname{Tr}(1-u) \xi(A)^{*} \xi(B)\right\} \geqslant 0
\end{aligned}
$$

where $\operatorname{Re}\{\cdots\}$ means the real part. It follows from Schatten [3, p. 43, Theorem 6] that $\xi(A) * \xi(B)=[\xi(A), \xi(B)] \geqslant 0$.

Conversely suppose that $[\xi(A), \xi(B)] \geqslant 0$ for every $A, B \in \mathfrak{F}$. Take $A \in \mathscr{F}$ and let $\left\{A_{1}, \cdots, A_{n}\right\} \subset \mathfrak{F}$ be a finite partition of $A$ and $\left\{a_{1}, \cdots, a_{n}\right\}$ $\subset B(\mathfrak{S})$ be such that $\left\|a_{k}\right\| \leqslant 1,1 \leqslant k \leqslant n$. Then, putting $x_{k}=\xi\left(A_{k}\right)$, we have

$$
\begin{aligned}
& \|\xi(A)\|_{X}^{2}-\left\|\sum_{k=1}^{n} \xi\left(A_{k}\right) a_{k}\right\|_{X}^{2} \\
& \quad=\sum_{k=1}^{n}\left(\left\|x_{k}\right\|_{X}^{2}-\left\|x_{k} a_{k}\right\|_{X}^{2}\right)+2 \operatorname{Re}\left\{\sum_{j>k}\left(\left\langle x_{j}, x_{k}\right\rangle_{X}-\left\langle x_{j} a_{j}, x_{k} a_{k}\right\rangle_{X}\right)\right\} \\
& \quad \geqslant \sum_{k=1}^{n}\left(1-\left\|a_{k}\right\|^{2}\right)\left\|x_{k}\right\|_{X}^{2}+2 \operatorname{Re}\left\{\sum_{j>k}\left(\left\|x_{j}^{*} x_{k}\right\|_{\tau}-\operatorname{Tr}\left(a_{j}^{*} x_{j}^{*} x_{k} a_{k}\right)\right)\right\} \\
& \quad \geqslant 2 \sum_{j=k}\left(1-\left\|a_{k} a_{j}^{*}\right\|\right)\left\|x_{j}^{*} x_{k}\right\|_{z} \geqslant 0
\end{aligned}
$$

since $x_{j}^{*} x_{k} \geqslant 0$ and $\left\|a_{k}\right\| \leqslant 1,1 \leqslant j, k \leqslant n$. Hence we have $\|\xi\|_{0}(A) \leqslant\|\xi(A)\|_{X}$ and, therefore, $\|\xi\|_{0}(A)=\|\xi(A)\|_{X}$.

Remark 2.2. (1) If $\xi \in c a(\Omega ; X)$ is orthogonally scattered, i.e., $[\xi(A), \xi(B)]=0$ for every disjoint $A, B \in \mathscr{F}$, then it necessarily satisfies the condition (1.2) by Theorem 2.1. This fact was proved in [2, Proposition 5.5]. (2) It follows from the above proof that, for $x, y \in X$, $[x, y] \geqslant 0$ iff $\|x+y\|_{x} \geqslant\|x+y u\|_{X}, u \in U(\mathfrak{G})$. Hence, $[x, y]=0$ iff $\|x \pm y\|_{X}$ $\geqslant\|x+y u\|_{X}, u \in U\left(\mathfrak{S}_{2}\right)$.
§3. Hilbert space valued measures. According to Theorem 2.1,
we can characterize the conditions (1.4) and (1.5) for an $\mathfrak{S}$-valued measure $\xi \in c a(\Omega ; \mathscr{S})$. Interchanging $\mathscr{S}_{\mathcal{J}}$ with $\mathfrak{R}$ and letting $\mathfrak{R}=\boldsymbol{C}$ in Theorem 2.1, we obtain the following corollary.

Corollary 3.1. An $\mathfrak{S c}$-valued measure $\xi \in c a(\Omega ; \mathfrak{F})$ satisfies that $\|\xi\|(A)=\|\xi(A)\|$ for every $A \in \mathfrak{F}$ if and only if it satisfies that $\langle\xi(A)$, $\xi(B)\rangle \geqslant 0$ for every $A, B \in \mathfrak{F}$.

It follows from Remark 2.2 that, for $\phi, \psi \in \mathfrak{F},\langle\phi, \psi\rangle \geqslant 0$ iff $\|\phi+\psi\|$ $\geqslant\|\phi+\alpha \psi\|, \alpha \in C$ with $|\alpha|=1$ and, hence, $\langle\phi, \psi\rangle=0$ iff $\|\phi \pm \psi\| \geqslant\|\phi+\alpha \psi\|$, $\alpha \in C$ with $|\alpha|=1$.

The following shows that an $\mathfrak{F}$-valued measure $\xi$ satisfying the condition (1.5) is essentially a scalar valued measure.

Proposition 3.2. An $\mathfrak{S}_{\mathrm{C}}$-valued measure $\xi \in c a\left(\Omega ; \mathscr{F}^{2}\right)$ satisfies that $\|\xi\|_{0}(A)=\|\xi(A)\|$ for every $A \in \mathfrak{F}$ if and only if there exist a finite nonnegative measure $\mu$ on $\mathfrak{F}$ and a vector $\phi \in \mathfrak{S}$ such that $\xi(\cdot)=\mu(\cdot) \phi$.

Proof. If we identify $\mathscr{S}$ with $S(\mathscr{S}, C)$, then $[\phi, \psi]=\psi \otimes \bar{\phi}$ for $\phi$, $\psi \in \mathscr{S}$ where the tensor product $\otimes$ is in the sense of [3]. Note that $[\phi, \psi] \geqslant 0$ iff $\langle\phi, \psi\rangle=\operatorname{Tr}(\psi \otimes \bar{\phi})=\|\psi \otimes \bar{\phi}\|_{\tau}=\|\psi\| \cdot\|\phi\|$ iff there is some $\lambda \geqslant 0$ such that $\phi=\lambda \psi$ or $\psi=\lambda \phi$. Since the "if" part is easy to verify, we prove the "only if" part. Without loss of generality we may assume that there is some $B \in \mathscr{F}$ such that $\xi(B) \neq 0$. Put $\phi=\xi(B)$. By Theorem 2.1 we have that $[\xi(A), \xi(B)]=\phi \otimes \overline{\xi(A)} \geqslant 0$ for each $A \in \mathfrak{F}$. Hence there exists some $\mu(A) \geqslant 0$ such that $\xi(A)=\mu(A) \phi$ for each $A \in \mathscr{F}$. It is immediate that $\mu$ is a finite nonnegative measure on $\mathfrak{F}$. Therefore the proof is complete.

Acknowledgement. The author would like to express his hearty thanks to Prof. H. Umegaki for his valuable suggestions.

## References

[1] Diestel, J., and Uhl, Jr., J. J.: Vector Measures. Mathematical Surveys, no. 15, Amer. Math. Soc., Providence, R. I. (1977).
[2] Kakihara, Y.: Hilbert $A$-module-valued measures and a Riesz type theorem (submitted to J. Math. Anal. Appl.).
[3] Schatten, R.: Norm Ideals of Completely Continuous Operators. SpringerVerlag, Berlin (1960).

