10. Infinitesimal Deformations of Cusp Singularities

By Iku Nakamura
Department of Mathematics, Hokkaido University
(Communicated by Kunihiko Kodaira, m. J. A., Jan. 12, 1984)

Introduction. The purpose of this article is to compute infinitesimal deformations \boldsymbol{T}^{1} of cusp singularities of two dimension. Let T be a cusp singularity, C the exceptional set of the minimal resolution of T, r the number of irreducible components of C. Then C is a (reduced) cycle of r rational curves. Our main consequence is that $\operatorname{dim} T^{1}$ is equal to $r-C^{2}$ if $C^{2} \leqq-5$. This has been conjectured by Behnke [1]. After completing this work, I was informed that Behnke [2] solved this in a manner slightly different from ours.
§1. Definitions and a fundamental lemma. (1.1) Let M be a complete module in a real quadratic field $K, U^{+}(M)$ the group of all totally positive units keeping M invariant by multiplication, V an infinite cyclic subgroup of $U^{+}(M)$. We define a subgroup $G(M, V)$ of $S L(2, R)$ by

$$
G(M, V)=\left\{\left(\begin{array}{cc}
v & m \\
0 & 1
\end{array}\right) \in S L(2, R) ; v \in V, m \in M\right\} .
$$

We define an action of $G(M, V)$ on the product $\boldsymbol{H} \times \boldsymbol{H}$ of two upper half planes by

$$
\left(\begin{array}{ll}
v & m \\
0 & 1
\end{array}\right):\left(z_{1}, z_{2}\right) \longrightarrow\left(v z_{1}+m, v^{\prime} z_{2}+m^{\prime}\right)
$$

where v^{\prime} and m^{\prime} denote the conjugates of v and m respectively. The action of $G(M, V)$ on $\boldsymbol{H} \times \boldsymbol{H}$ is free and properly discontinuous. We have a nonsingular surface $X^{\prime}(M, V)$ as quotient. This $X^{\prime}(M, V)$ is partially compactified by adding a point ∞ into a normal complex space $X(M, V)$. Let $f: Y(M, V) \rightarrow X(M, V)$ be the minimal resolution of $X(M, V), C$ the exceptional set of $f, \pi: \mathscr{D} \rightarrow Y(M, V)$ the universal covering of $Y(M, V), \mathcal{C}=\pi^{-1}(C)$. For brevity we denote $X(M, V)$ and $Y(M, V)$ by X and Y respectively. The space X has a unique isolated singularity at ∞, which we call a cusp singularity. The exceptional set C is a (reduced) cycle of rational curves.
(1.2) Let M^{*} be the dual of M, i.e. by definition $M^{*}=\{x \in K$; $\operatorname{tr}(x y) \in \boldsymbol{Z}$ for any $y \in M\}$. Define a mapping i of K into \boldsymbol{R}^{2} by $i(x)$ $=\left(x, x^{\prime}\right), x \in K$. Let $\left(M^{*}\right)^{+}=\left\{x \in M^{*} ; x>0, x^{\prime}>0\right\}$, and let $\Sigma^{+}(M)$ be the convex closure of $i\left(\left(M^{*}\right)^{+}\right), \partial \Sigma^{+}\left(M^{*}\right)$ be the boundary of $\Sigma^{+}\left(M^{*}\right)$. Then we number lattice points lying on $\partial \Sigma^{+}\left(M^{*}\right)$ in a consecutive order. Namely we let $i^{-1}\left(\Sigma^{+}\left(M^{*}\right) \cap i\left(M^{*}\right)\right)=\left\{B_{j} ; j \in Z\right\}$ with $B_{j}<B_{k}$ for $j>k$.

The group V acts on $M^{*}, \Sigma^{+}\left(M^{*}\right)$ and $\partial \Sigma^{+}\left(M^{*}\right)$. Let v be a generator of V with $0<v<1$. Then there exists s such that $v B_{k}=B_{k+s}$ for any k. We know that $s=-C^{2}$ by [5]. Moreover there are positive integers $b_{k}(\geqq 2)(k \in Z)$ such that $b_{k+s}=b_{k}$ and $b_{k} B_{k}=B_{k-1}+B_{k+1}$ for any $k \in Z$.
(1.3) We denote by $\Omega_{Y}^{1}(\log C)$ the sheaf over Y of germs ω of meromorphic one forms such that the poles of ω and $d \omega$ are contained in $C\left(=C_{\text {red }}\right)$. Since C is with normal crossing, $\Omega_{Y}^{1}(\log C)$ is locally free. In fact, $\Omega_{Y}^{1}(\log C)$ is isomorphic to $\mathcal{O}_{Y}(F) \oplus \mathcal{O}_{Y}(-F)$ for a flat line bundle F on Y. This can be shown by using natural extensions of two sections $d z_{1}$ and $d z_{2}$ to \mathscr{D}. Let $\tilde{\Theta}_{Y}(n C)=\mathcal{F}_{\text {om }_{O_{Y}}}\left(\Omega_{Y}^{1}(\log C)\right.$, $\mathcal{O}_{Y}(n C)$). Similarly $\tilde{\Theta}_{\mathscr{Q}}(n \mathcal{C})$ is defined.

Lemma (1.4) (Compare [1]). Let $B(n)=\left\{-a B_{k}-b B_{k+1}\left(\neq-b B_{s}\right)\right.$; $a>0, b \geqq 0, a+b \leqq n, 0 \leqq k \leqq s-1\}, \theta(\mu)=\exp \left(2 \pi \sqrt{-1}\left(\mu z_{1}+\mu^{\prime} z_{2}\right)\right)$. Suppose $s \geqq 3$.

1) The first cohomology group $H^{1}\left(V, H^{0}\left(\mathscr{D}, \widetilde{\Theta}_{\mathscr{D}}(n \mathcal{C})\right)\right)$ of V-modules is generated by $\theta(\mu) \partial_{1}$ and $\theta(\mu) \partial_{2}, \mu \in B(n)$.
2) The first cohomology group $H^{1}\left(V, H^{0}\left(\mathscr{D}, \mathcal{O}_{\mathscr{D}}(n \mathcal{C})\right)\right)$ of V-modules is generated by $\theta(\mu), \mu \in B(n) \cup\{0\}$.
3) Define a homomorphism $\chi: H^{1}\left(V, H^{0}\left(\mathscr{D}, \widetilde{\Theta}_{\mathscr{D}}(n \mathcal{C})\right)\right)$ into $H^{1}(V$, $\left.H^{0}\left(\mathscr{D}, \mathcal{O}_{\mathscr{D}}(n \mathcal{C})\right)\right)^{s}$

$$
\begin{aligned}
\chi & =\left(\chi_{0}, \chi_{1}, \cdots, \chi_{s-1}\right), \\
\chi_{j}\left(\theta(\mu) \partial_{1}\right) & =\sum_{k}^{\prime} B_{j+k_{s}} \theta\left(\mu+B_{j+k s}\right), \\
\chi_{j}\left(\theta(\mu) \partial_{2}\right) & =\sum_{k}^{\prime} B_{j+k_{s}}^{\prime} \theta\left(\mu+B_{j+k s}\right)
\end{aligned}
$$

where Σ^{\prime} denotes the summation over the set of all k with $\mu+B_{j+k s}$ $\epsilon-\left(M^{*}\right)^{+} \cup\{0\} . \quad$ Then for any n large enough $\boldsymbol{T}^{1}=\operatorname{Ker} \chi$.

Remark (1.5). In $H^{1}\left(V, H^{0}\left(\mathscr{D}, \mathcal{O}_{\mathscr{D}}(n \mathcal{C})\right)\right), \theta\left(\mu_{1}\right)=\theta\left(\mu_{2}\right)$ iff $V \mu_{1}=V \mu_{2}$, $\mu_{k} \in-\left(M^{*}\right)^{+} \cup\{0\}$.
(1.6) Let $\mu \in\left(M^{*}\right)^{+}$. Then there exist k, a and b such that $\mu=a B_{k}$ $+b B_{k+1}, a>0, b \geqq 0$. These k, a and b are uniquely determined by μ. We call μ internal if $a>0, b>0$ and call μk-extremal if $a>0, b=0$. We say that μ is extremal if μ is k-extremal for some k. We define the weight of μ by wt $\mu=a+b$, wt $(0)=0$. If $\mu(\neq 0)$ is not in $\left(M^{*}\right)^{+}$, then we define wt $\mu=-\infty$. We notice that if $V \mu_{1}=V \mu_{2}$, then wt μ_{1} $=\mathrm{wt} \mu_{2}$.

Fundamental Lemma (1.7).

1) Let $\mu_{1}, \mu_{2} \in\left(M^{*}\right)^{+}$. Then $\mathrm{wt}\left(\mu_{1}+\mu_{2}\right) \geqq \mathrm{wt}\left(\mu_{1}\right)+\mathrm{wt}\left(\mu_{2}\right)$.
2) Suppose that $j_{1} \leqq j_{2} \leqq \cdots \leqq j_{l}$. Then wt $\left(B_{j_{1}}+B_{j_{2}}+\cdots+B_{j_{l}}\right)$ $\geqq l+\left(b_{j_{1}+1}-2\right)+\left(b_{j_{1}+2}-2\right)+\cdots+\left(b_{j_{l}-1}-2\right)$. Equality holds only when $b_{\lambda}=2$ for $j_{1}+2 \leqq \lambda \leqq j_{l}-2$.
3) Suppose that $j_{1} \leqq j_{2} \leqq \cdots \leqq j_{l}$. Then wt $\left(B_{j_{1}}+B_{j_{2}}+\cdots+B_{j_{l}}\right)=l$ iff $b_{\lambda}=2$ for $j_{1}+1 \leqq \lambda \leqq j_{l}-1$.

Proof. Use $B_{j}+B_{j+n}=B_{j+1}+B_{j+n-1}+\sum_{\substack{j+n+1}}^{j+n-1}\left(b_{\lambda}-2\right) B_{\lambda}$ for $n \geqq 2$.

Lemma (1.8). Suppose $s \geqq 5$, and that there is no consecutive subsequence $b_{j}, b_{j+1}, \cdots, b_{j+s-5}$ of $b_{k}(k \in Z)$ such that $b_{\lambda}=2$ for $j \leqq \lambda$ $\leqq j+s-5$. Let $0 \leqq i \leqq s-1,0 \leqq j \leqq s-1, \mu=\alpha B_{i}+\beta B_{i+1} \in\left(M^{*}\right)^{+}, \alpha>0$, $\beta \geqq 0, m>1, a, b>0, c \geqq 0, h$ and $k \in Z$.

1) If $\mu-B_{j+k s}=(m-1) B_{j+n s}$, then wt $\mu \geqq m$, equality holding iff $h=k=0$.
2) If $\mu-B_{j+k s}=a B_{j-1+h s}+(b-1) B_{j+h s}$, then

2-1) μ is internal and wt $\mu \geqq a+b+1$, or
2-2) μ is l-extremal and wt $\mu \geqq a+b+b_{l}-1$, or
2-3) $k=h=0$, or $k=h=1$.
3) If $\mu-B_{j+k s}=(a-1) B_{j-1+h s}+b B_{j+h s}$, then

3-1) μ is internal and wt $\mu \geqq a+b+1$, or
3-2) μ is l-extremal and wt $\mu \geqq a+b+b_{l}-1$, or
3-3) $k=h=0$, or $k=h=1$.
4) If $\mu-B_{j+k s}=B_{j-2+h s}+c B_{j-1+h s}$, then

4-1) μ is internal and wt $\mu \geqq c+3$, or
4-2) μ is l-extremal and wt $\mu \geqq c+b_{l}+1$, or
4-3) $k=h=0 \quad$ and $\mu=\left(c+b_{j-1}\right) B_{j-1} \quad(1 \leqq j \leqq s-1) \quad$ or $\quad k=h=1$, $\mu=\left(c+b_{s-1}\right) B_{s-1}, j=0$.
5) If $\mu-B_{j+k s}=c B_{j+1+h s}+B_{j+2+h s}$, then

5-1) μ is internal and wt $\mu \geqq c+3$, or
5-2) μ is l-extremal and wt $\mu \geqq c+b_{l}+1$, or
5-3) $k=h=0$ and $\mu=\left(c+b_{j+1}\right) B_{j+1} \quad(0 \leqq j \leqq s-2) \quad$ or $\quad k=h=1$, $\mu=\left(c+b_{0}\right) B_{0}, j=s-1$.
§ 2. Theorem. Theorem (2.1). Let T be a cusp singularity with $s \geqq 5$. Then the space T^{1} of infinitesimal deformations of T is, as a subspace of $H^{1}\left(V, H^{0}\left(\mathscr{D}, \tilde{\Theta}_{\mathscr{D}}(n \mathcal{C})\right)\right.$) for n large enough, generated by

$$
\delta_{i, j}:=\theta\left(-i B_{j}\right) \delta_{j}, \quad 0 \leqq j \leqq s-1, \quad 1 \leqq i \leqq b_{j}-1
$$

where $\delta_{j}=B_{j}^{\prime} \partial_{1}-B_{j} \partial_{2}$. In particular $\operatorname{dim} \boldsymbol{T}^{1}=s+r$.
Proof. For simplicity's sake we assume that there is no consecutive subsequence $b_{j}, b_{j+1}, \cdots, b_{j+s-5}$ of b_{k} such that $b_{\lambda}=2$ for $j \leqq \lambda$ $\leqq j+s-5$. By (1.4) $T^{1}=\operatorname{Ker} \chi$. Take $\xi \in \operatorname{Ker} \chi$. Express

$$
\xi=\sum_{\mu \in B} \theta(\mu)\left(C(\mu) \partial_{1}+D(\mu) \partial_{2}\right)
$$

for a finite subset B of $B(n)$ and constants $C(\mu)$ and $D(\mu)$. Define

$$
h(B)=\max \left\{\mathrm{wt}(-\mu)-b_{i} ; \begin{array}{l}
\mu(\in B) \text { is } i \text {-extremal for some } i \\
\text { either } C(\mu) \neq 0 \text { or } D(\mu) \neq 0
\end{array}\right\} .
$$

First we prove
Lemma (2.2). Suppose $h(B) \geqq 0$. Then $C(\mu)=D(\mu)=0$ if μ is internal and if $\mathrm{wt}(-\mu) \geqq h(B)+2$.

Proof of Lemma (2.2). Let $l=\max \{\mathrm{wt}(-\mu) ; \mu(\in B)$ is internal, either $C(\mu) \neq 0$ or $D(\mu) \neq 0\}$. Then we may assume $l \geqq h(B)+2$. Then by (1.8)

$$
\begin{array}{r}
\chi_{j}(\xi)=\sum_{a, b>0}^{\alpha+b=l} \theta\left(-a B_{j-1}-(b-1) B_{j}\right)\left(C\left(-a B_{j-1}-b B_{j}\right) B_{j}\right. \\
\left.+D\left(-a B_{j-1}-b B_{j}\right) B_{j}^{\prime}\right) \\
+\sum_{a, b>0}^{a+b=l} \theta\left(-(a-1) B_{j}-b B_{j+1}\right)\left(C\left(-a B_{j}-b B_{j+1}\right) B_{j}\right. \\
\left.+D\left(-a B_{j}-b B_{j+1}\right) B_{j}^{\prime}\right) \\
+\left(\text { terms for } \mu \neq a B_{j-1}-(b-1) B_{j}, \quad-(a-1) B_{j}-b B_{j+1},\right. \\
a+b=l, a, b>0) .
\end{array}
$$

Hence we have

$$
\begin{aligned}
& C\left(-a B_{j-1}-b B_{j}\right) B_{j}+D\left(-a B_{j-1}-b B_{j}\right) B_{j}^{\prime}=0 \\
& C\left(-a B_{j-1}-b B_{j}\right) B_{j-1}+D\left(-a B_{j-1}-b B_{j}\right) B_{j-1}^{\prime}=0
\end{aligned}
$$

Since $B_{j} B_{j-1}^{\prime}-B_{j}^{\prime} B_{j-1} \neq 0$, we have $C\left(-a B_{j-1}-b B_{j}\right)=D\left(-a B_{j-1}-b B_{j}\right)$ $=0$ for $a+b=l, a, b,>0$. This contradicts the definition of l, hence (2.2) is proved.
Q.E.D.

Let $m_{j}=h(B)+b_{j}$. By the definition of $h(B), C\left(-m B_{j}\right)=D\left(-m B_{j}\right)$ $=0$ if $m \geqq m_{j}+1$. If $h(B) \geqq 0$, then by (2.2) and (1.8)

$$
\begin{aligned}
\chi_{j}(\xi)= & \theta\left(-\left(m_{j}-1\right) B_{j}\right)\left(C\left(-m_{j} B_{j}\right) B_{j}+D\left(-m_{j} B_{j}\right) B_{j}^{\prime}\right) \\
& +\theta\left(-h(B) B_{j-1}-B_{j-2}\right)\left(C\left(-m_{j-1} B_{j-1}\right) B_{j}+D\left(-m_{j-1} B_{j-1}\right) B_{j}^{\prime}\right) \\
& +\left(\text { terms for } \mu \neq-\left(m_{j}-1\right) B_{j},-h(B) B_{j-1}-B_{j-2}\right) .
\end{aligned}
$$

Hence

$$
C\left(-m_{j} B_{j}\right) B_{j}+D\left(-m_{j} B_{j}\right) B_{j}^{\prime}=C\left(-m_{j} B_{j}\right) B_{j+1}+D\left(-m_{j} B_{j}\right) B_{j+1}^{\prime}=0
$$

from which it follows $C\left(-m_{j} B_{j}\right)=D\left(-m_{j} B_{j}\right)=0$. This contradicts the definition of $h(B)$. Hence $h(B)$ is negative. Then by the same argument as above $C(\mu)=D(\mu)=0$ for μ internal, so that

$$
\left.\xi=\sum_{j=0}^{s-1} \sum_{i=1}^{b_{j}-1} \theta\left(-i B_{j}\right)\left(C-i B_{j}\right) \partial_{1}+D\left(-i B_{j}\right) \partial_{2}\right) .
$$

Then

$$
\chi_{j}(\xi)=\sum_{i=0}^{b_{j}-1} \theta\left(-(i-1) B_{j}\right)\left(C-\left(-i B_{j}\right) B_{j}+D\left(-i B_{j}\right) B_{j}^{\prime}\right)
$$

which shows (2.1). Theorem in the general case can be proved similarly by using (1.7). Thus $\operatorname{dim} T^{1}=s+\sum_{\substack{s=0 \\ s-1}}\left(b_{\lambda}-2\right)=s+r$ by [5], where $r=\#$ (irreducible components of C). Q.E.D.

The same method yields a complete description of T^{1} as a subspace of $H^{1}\left(V, H^{\circ}\left(\mathscr{D}, \widetilde{\Theta}_{\mathscr{D}}(n \mathcal{C})\right)\right.$) in the cases $1 \leqq s \leqq 4$. The details will appear elsewhere [4].

References

[1] Behnke, K.: Infinitesimal deformations of cusp singularities (to appear in Math. Ann.).
[2] --: On the module of Zariski differentials and infinitesimal deformations of cusp singularities (preprint).
[3] Freitag, E., and Kiehl, R.: Algebraische Eigenschaften der Lokalen Ringe in den Spitzen der Hilbertschen Modulgruppe. Invent. math., 24, 121-148 (1974).
[4] Nakamura, I.: Infinitesimal deformations of cusp singularities (preprint).
[5] -: Inoue-Hirzebruch surfaces and a duality of hyperbolic unimodular singularities. I. Math. Ann., 252, 221-235 (1980).

