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Introduction. The purpose of this article is to compute infini-
tesimal deformations T* of cusp singularities of two dimension. Let
T be a cusp singularity, C the exceptional set of the minimal resolution
of T, r the number of irreducible components of C. Then C is a
(reduced) cycle of » rational curves. Our main consequence is that
dim T' is equal to »r—C? if C*< —5. This has been conjectured by
Behnke [1]. After completing this work, I was informed that Behnke
[2] solved this in a manner slightly different from ours.

§1. Definitions and a fundamental lemma. (1.1) Let M be a
complete module in a real quadratic field K, U*(M) the group of all
totally positive units keeping M invariant by multiplication, V an

infinite cyclic subgroup of U*(M). We define a subgroup G(M, V) of
SL(2, R) by

G, V)={<z q’) eSLE, R);veV, me M}.

We define an action of G(M, V) on the product H X H of two upper
half planes by

(g 71n) 2 (21 2)—> (V2 M, V2 + M)

where v’ and m’ denote the conjugates of » and m respectively. The
action of G(M,V) on HX H is free and properly discontinuous. We
have a nonsingular surface X’(M, V) as quotient. This X'(M,V) is
partially compactified by adding a point o into a normal complex
space X(M,V). Let f: Y(M,V)-X(M,V) be the minimal resolution
of X(M,V), C the exceptional set of f, =: 9—Y (M, V) the universal
covering of Y(M, V), C=="*(C). For brevity we denote X(M,V) and
Y(M,V) by X and Y respectively. The space X has a unique isolated
singularity at co, which we call a cusp singularity. The exceptional
set C is a (reduced) cycle of rational curves.

(1.2) Let M* be the dual of M, i.e. by definition M*={xec K ;
tr (xy) € Z for any y € M}. Define a mapping ¢ of K into R* by i(x)
=(,2), xc K. Let (M*)*={xeM*; >0, 2’ >0}, and let X*(M) be
the convex closure of i((M*)*), 32 *(M*) be the boundary of 3+(M*).
Then we number lattice points lying on 3+ (M*) in a consecutive order.
Namely we let ¢-'(J*(M*)N¢(M*))={B,; j € Z} with B,<B, for j>k.
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The group V acts on M*, 3+(M*) and 02+(M*). Let v be a generator
of V with 0<v<1. Then there exists s such that vB,=B,., for any
k. Weknow that s=—C?by [6]. Moreover there are positive integers
b, (=2) (k € Z) such that b,,,=b, and b,B,=B,_,+B,., for any k ¢ Z.

(1.3) We denote by 2%(og C) the sheaf over Y of germs o of
meromorphic one forms such that the poles of w and dw are contained
in C (=C,y). Since C is with normal crossing, 2%(log C) is locally
free. In fact, 2%(og C) is isomorphic to O,(F)YPO,(—F) for a flat
line bundle F on Y. This can be shown by using natural extensions
of two sections dz, and dz, to 9. Let 6,(nC)=Ylom,, (2%(og C),
O,mC)). Similarly 6,(nC) is defined.

Lemma (1.4) (Compare [1]). Let B(n)={—aB,—bB,,, (+—0bB,);
a>0, =0, a+b=<n, 0<k<s—1}, 0(u)=exp 2av — 1 (uz,+4'2)). Sup-
pose $=3.

1) The first cohomology group H'(V, H(D, 6,n())) of V-modules
18 generated by 0(1)d, and 0(u)d,, 1 € B(n).

2) The first cohomology group H'(V, H'(D, O»(n())) of V-modules
is generated by 6(u), 1 € B(n) U {0}.

8) Define a homomorphism %: H'(V, H(D,8,n())) into H'(V,
H(D, OsnC)))

X=(X0, xu ] xs—l)’
Xj(o(ﬂ)al)=z;c Bj+ksa(ﬂ+Bj+ks),
X,(ﬁ(#)az)=2§c B;+k30(#+Bj+kx)
where ' denotes the summation over the set of all k with p+B;.,,
€ —(M*)*U{0}. Then for any n large enough T'=Ker X.

Remark (1.5). In HYV,H"(D, OynC))), 6(p)=0(y,) iff V=V,
e € —(M*)* U{0}.

(1.6) Letpe (M*)*. Then there exist k, @ and b such that u=aB,
+bB,.,, >0, b=0. These k&, a and b are uniquely determined by pz.
We call g internal if ¢>0, b>0 and call x4 k-extremal if a>0, b=0.
We say that p is extremal if p is k-extremal for some k. We define
the weight of y by wtpu=a+b, wt(0)=0. If u(30) is not in (M*)*,
then we define wt gu=—occ. We notice that if V=V, then wty,
=Wt .

Fundamental Lemma (1.7).

1) Let p, e (M*)*. Then Wt (u+pm) 2 W () + Wt ().

2) Suppose that j,<4,<---<j,. Then wt(B;,,+B;,,+ - -+B;)
=14+ 0,0 —2)+b,,00—2)+ - - - +(by,.1—2). Equality holds only when
b;=2 for j,+2=52=7,—2.

8) Suppose that j,<j,<---<7,. Then wt(B,+B,,+---+B;)=1
iff b;=2 for j,+1=1<j5,—1.

Proof. Use B;+B,.,=B;,1+Bj. 1+ 2.{27:1 (b;—2)B, for n=2.
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Lemma (1.8). Suppose s=5, and that there is no consecutive
subsequence b, by,,, - - -, b,,,_s of b, (ke Z) such that b,=2 for j<2
<j+s—5. Let 0=i<s—1, 0<7<s—1, p=aB,+pB,,, € (M*)*, a>0,
£=0, m>1, a, b>0, ¢=0, h and k ¢ Z.

1) If p—B,,,,=m—1)B,,,,, then wtu=m, equality holding iff
h=k=0.

2) If #—Bj+ks=aBj—1+ns+(b_l)Bj+ns, then

2-1) pisinternal and wtp=a+b+1, or

2-2) pis l-extremal and wtp=a+b+b,—1, or

2-3) k=h=0, or k=h=1.

3) Ifll"'Bj+ks=(a—]-)Bj-1+ns+ij+hs, then

3-1) pisinternal and wtpy=a+b+1, or

3-2) pisl-extremal and wtpy=a+b+b,—1, or

3-3) k=h=0, or k=h=1.

4) If F‘_Bj+ks=Bj—2+hs+CBj—l+hs? then

4-1) pis internal and wtu=c+3, or

4-2) pis l-extremal and wtp=c+b,+1, or

4-3) k=h=0 and p=(+b, )B,, A=j<s—1) or k=h=1,
#=(C+ b,-)B,_;, 7=0.

5) If p—B,,x;=CBj,11ns+ Bjisins then

5-1) pis internal and wtp=c+3, or

5-2) pis l-extremal and wtu=c+b,+1, or

5-3) k=h=0 and p=(c+b,,)B,,; 0=Zj<s—2) or k=h=1,
p=(c+b)B,, j=s—1.

§ 2. Theorem. Theorem (2.1). Let T be a cusp singularity
with s=5. Then the space T' of infinitesimal deformations of T is,
as a subspace of H'(V, H (D, 8,(n(C))) for n large enough, generated by

06;,,:=0(—1tByj;, 0=j<s—1, 1=i<b,—1
where §,=B)d,— B,0,. In particular dim T"'=s4-7.

Proof. For simplicity’s sake we assume that there is no con-
secutive subsequence b, b,,,, - - -, b;,,_s of b, such that b,=2 for <2
<j+s—5. By (1.4) T'=KerXx. Take &écKerX. Express

$=Z,ueza 0(#)(0(#)81+D(#)32)
for a finite subset B of B(n) and constants C(¢) and D(y). Define
h(B)= max {Wt (—p)—by; y-( e B) is i-extremal for some i}.
either C(x)+#0 or D()=+0

First we prove

Lemma (2.2). Suppose h(B)=0. Then C(u)=D(w)=0 if p s
internal and if wt(—p)=h(B)+2.

Proof of Lemma (2.2). Let l=max {wt(—p); p(e B) is internal,
either C(¢)#0 or D(p)+0}. Then we may assume [=h(B)+2. Then
by (1.8)
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Xj(f)zzgfbb;ol 0(—aBj—l_(b—I)Bj)(C(—a‘Bj—l_ij)Bj
+D(—aB, ,—bB)B))
+Zg,+bb>=ol 0("‘(““‘1)Bj—ij+1)(C(—aBj‘_ij+1)Bj
+D(—aB,;—bB,,,)B))
+ (terms for p#aB,_,—(b—1)B,, —(a—1)B,—bB,,,,
a+b=l, a, b>0).
Hence we have
C(—aB,_,—bB,)B;+D(—aB,_,—bB,)B;=0,
C(—aB,_,—bB,)B,_,+D(—aB,_,—bB,)B;_,=0.
Since B,B;_,— BB, ,+0, we have C(—aB, —bB;)=D(—aB,_,—bB))
=0 for a4+ b=, a, b,>0. This contradicts the definition of [, hence
(2.2) is proved. Q.E.D.
Let m;=h(B)+b,. By the definition of #(B), C(—mB,;)=D(—mB))
=0if m=m,+1. If h(B)=0, then by (2.2) and (1.8)
1,(&)=6(—(m;—1)B)(C(—m,B,)B;+ D(—m;B,)B))
+60(—mB)B,_,—B,_;))(C(—m,_,B,;_)B;+D(—m,_,B;_,)B’)
+ (terms for p= —(m,;—1)B,, —h(B)B,;_,—B;_,).
Hence
C(—m,;B;))B,+ D(—m,;B,)B;=C(—m,B;)B,.,+D(—m,B,)B.,=0
from which it follows C(—m,;B;,)=D(—m,;B,)=0. This contradicts
the definition of n(B). Hence h(B) is negative. Then by the same
argument as above C(x)=D(p)=0 for p internal, so that
=370 2,27 0(—1iB,)(C —1B,)3,+ D(—1B,)d,).
Then
1,(8)= 32045 6(— G—1)B,)(C — (—iB,)B,+ D(—iB))B))
which shows (2.1). Theorem in the general case can be proved simi-
larly by using (1.7). Thus dim T'=s+>_ 5=t (b,—2)=s+7r by [5], where
r=4# (irreducible components of C). Q.E.D.
The same method yields a complete description of T as a subspace
of H'((V, H'(D, 6,n(C))) in the cases 1<s<4. The details will appear
elsewhere [4].
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