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7. Zeros, Eigenvalues and Arithmetic

By Akio FuJi
Department of Mathematics, Rikkyo University

(Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1984)

Let 7 run over the imaginary parts of the non-trivial zercs of the
Riemann zeta function {(s). Let 1/4+#* run over the eigenvalues of
the discrete spectrum of the Laplace-Beltrami operator in L* (the
upper half plane /I"), where we take I'=PSL(2, Z). Let « be a posi-
tive number. Here we introduce the zeta functions defined by

26)=5 D and g -3 e,

7>0 >0 rs

We are concerned with their analytic properties and their arithmetic.

To state our results we shall introduce some notations. A(.)is
the von Mangoldt function. Let {P,} run over the primitive hyperbolic
conjugacy classes in PSL(2,Z). N(P,) denotes the square of the
eigenvalue (>>1) of a representative P,. For a hyperbolic conjugacy
class {P} satisfying P = P! with a natural number k, we put A(P)
=(log N(P,))/1—N(P)-"), where N(P)=N(P,)*. A(I") denotes the area
of the fundamental domain of I", which is equal to z/3. We assume
the Riemann Hypothesis to get the results on 7 or on Z,(s). The fol-
lowing theorem describes a property of the distribution of 7 or r.

Theorem 1. Let T>T, and « be a positive number. Then
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We remark that i) is a refinement of Landau’s theorem and has
been proved by the author in [3]. ii) can be proved by the same
method. Venkov [11] has studied the asymptotic behavior of the sum
Dwsecos (ar)e ' ag t—-+0. We see by this theorem that for any posi-
tive @ as m—o0, > ,<n Sin(a7)/7* converges to Z,(s) if Res>0 and
D o<rsm Sin (ar)/r* converges to 8,(s) if Res>1. Using the Poisson
summation formula and the Selberg trace formula, we can show the
following theorem.

Theorem 2. For any positive «, Z,(s) and 8,(s) are entire.



No. 1] Zeros, Eigenvalues and Arithmetic 23

We remark that > ,.,7"* has been studied by Guinand [5] and
Delsarte [2]. >,., (1/4+7%"* has been studied by Minakshisundaram
and Pleijel [9]. In a similar manner we can prove our Theorem 2 and
also study the zeta functions >,., cos (a7)/7* and > ,., cos (ar)/r*.

As is usual in the theory of numbers, the values of the zeta func-
tions at s=1 play important roles. The explicit formula for Z,1) is
well known (cf. (2.7) of Guinand [5]) and the oscillation of Z,(1) as
a—oo is esgentially that of —e*%/2 (3] ,<.. 4(n)—e*). On the contrary,
the evaluation of 3,(1) is more complicated. As a direct by-product of
the proof of Theorem 2 above, we can express 3,(1) explicitly. In
particular, we obtain the following corollary.

Corollary 1. As a—oo,

8.M)=Le (3 AiP)—e)+0@).
2 N(P)sea

Thus we see that that 8,(1) plays the same role in the theory of
the distribution of A(P) as does Z,(1) in the prime number theory (cf.
also Corollary 1’ below).

The values of the zeta functions at s=0 play also important roles.
As by-products of the proof of Theorem 2, we can evaluate Z,(0) or
B.(0) explicitely. We mention only the following corollary.

Corollary 2. i) lim (a—logn) Z,0)=— 4™
a—logn '\/n
i) lim (e—2logm)3,0) =L 4™ gug
a—3logn b4 n
1 AP)

lim (a—log N(P))3.(0) = _—

a—log N(P1) 2% vy VNP)
where {P,} is any hyperbolic conjugacy class.

We remark here that if we use Kuznecov’s version [7], [8] of
Selberg’s trace formula to prove Theorem 2, then we get another ex-
pression for 3,(1) and 8,(0). In particular, we obtain the following
corollaries.

Corollary 1’. As a— oo,

3.()= (né;m B(n)—e*")+O(a),

where B(n) is the residue at s=1 of the function £(2s) >, A.(c)/c’
and A,(c) is the number of the solutions of x*+nx+1=0 (mod ¢).

Corollary 2’. For n=3,

lim _ (a—2log MEVE=S -4 )8.0 =L B@w.
a—210g (n+ yni—4)/2 2 T

We can rewrite the second part of ii) of Corollary 2 and Corollary
2’ in the following form.

Corollary 3. Let n bean integer =3. Suppose that n*—4=Q*D
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and D is square free. Let X be the character of the quadratic number
field Q(v'n*—4) and L(s, X) be the Dirichlet L-function. Then
L, D=zF@m)-*  lim (a—- 2 log w)ga«»
a—210g (n+ yn2—4)/2 2
_ log (n+«/n —4)/2 BM)F ),
‘\/ 2

where we put

Fn)= (1—_;4(2)) ) (1 — M)vza, n)(1+ l)“ ) £_24 (1+%)"1vp(1, n)

v,(L, =1+ 3} ,,(p)

for a prime number p,
omy= 3 =420 e g o0g)
d>0,d%|n2—4 v(n, d)
18 the number of the classes of the quadratic forms ax*+2bxy- cy’
such that b*—ac=n*—4 and (a, 2b, ¢)=2d,
v(n, d)=Max {v;v|k and (gi—2;")/ @i —07*") | d},
7, 18 the fundamental unit of Q(Wn*—4) and pi=n++/n*—4)/2.

Thus we get some new expressions for L(1,X). In fact, from the
second expression for L(1,X) in the above corollary, we can derive
Dirichlet’s class number formula for the real quadratic number
fields.

Finally, we shall describe some special asymptotic behaviors of
the partial sums 3, ,.,sin(al)/7° or >, ,<nSin(ar)/r° as m—>oo.
Namely, we show that they present Gibbs’s phenomenon at certain
points. Our results may be described as follows.

Theorem 3. Let p be a prime number, k be an integer =1 and
‘m run over the integers =1.

i-1). For any ¢ in 0<o<1,
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i-8). For any o in 0<o<1,
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lim <_”_> 1 sin(£7(z/m) _, 1 (- sint g
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0
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ii). For any ¢ in 1<cZL2,
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We remark that the details on the zeros of {(s) have appeared in
[4] and the details on the eigenvalues of the Laplace-Beltrami operator

will appear elsewhere. For comparison we have stated both results
at the saime time.
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