6. The Steffensen Iteration Method for Systems of Nonlinear Equations

By Tatsuo Noda
Department of Applied Mathematics, Toyama Prefectural
College of Technology
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1984)

1. Introduction. Let $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ be a vector in R^{n} and D a region contained in R^{n}. Let $f_{i}(x)(1 \leq i \leq n)$ be real-valued nonlinear functions defined on D and $f(x)=\left(f_{1}(x), f_{2}(x), \cdots, f_{n}(x)\right)$ an n-dimensional vector-valued function. Then we shall consider a system of nonlinear equations

$$
\begin{equation*}
x=f(x) \tag{1.1}
\end{equation*}
$$

whose solution is \bar{x}. Denote by $\|x\|$ and $\|A\|$ the l_{∞}-norm and the corresponding matrix norm, respectively. That is,

$$
\|x\|=\max _{1 \leq i \leq n}\left|x_{i}\right| \quad \text { and } \quad\|A\|=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|,
$$

where $A=\left(a_{i j}\right)$ is an $n \times n$ matrix.
In generalizing the Aitken δ^{2}-process in one dimension to the case of n-dimensions, Henrici [1, p. 116] has considered the following formula, which is called the Aitken-Steffensen formula:

$$
y^{(k)}=x^{(k)}-\Delta X^{(k)}\left(\Delta^{2} X^{(k)}\right)^{-1} \Delta x^{(k)} .
$$

Furthermore, he has conjectured the following: We may hope that $y^{(k)}$ defined by (1.2) is closer to \bar{x} than $x^{(k)}$, provided that the matrices $\Delta X^{(k)}$ and $\Delta^{2} X^{(k)}$ are invertible. But he has not given mathematical certification to such a conjecture.

In [2], we have studied the above Aitken-Steffensen formula and shown [2, Theorem 2].

The purpose of this paper is to show Theorem 1 by considering a method of iteration, often called the Steffensen iteration method. Theorem 1 is an improvement on the result of [2, Theorem 2].
2. Statement of results. Define $f^{(i)}(x) \in R^{n}(i=0,1,2, \ldots)$ by

$$
\begin{aligned}
& f^{(0)}(x)=x \\
& f^{(i)}(x)=f\left(f^{(i-1)}(x)\right) \quad(i=1,2, \cdots) .
\end{aligned}
$$

Put

$$
\begin{aligned}
& d^{(0, k)}=x^{(k)}-\bar{x}, \\
& d^{(i, k)}=f^{(i)}\left(x^{(k)}\right)-\bar{x} \quad \text { for } i=1,2, \cdots .
\end{aligned}
$$

Then an $n \times n$ matrix $D\left(x^{(k)}\right)$ is defined as

$$
D\left(x^{(k)}\right)=\left(d^{(0, k)}, d^{(1, k)}, \cdots, d^{(n-1, k)}\right) .
$$

Throughout this paper, we shall assume the following five con-
ditions (A.1)-(A.5) which are analogous to those of [2].
(A.1) $f_{i}(x)(1 \leq i \leq n)$ are two times continuously differentiable on D.
(A.2) There exists a point $\bar{x} \in D$ satisfying (1.1).
(A.3) $\|J(\bar{x})\|<1$, where $J(x)=\left(\partial f_{i}(x) / \partial x_{j}\right)(1 \leq i, j \leq n)$.
(A.4) The vectors $d^{(0, k)}, d^{(1, k)}, \cdots, d^{(n-1, k)}, k=0,1,2, \cdots$,
are linearly independent.
(A.5) $\quad \inf \left\{\left|\operatorname{det} D\left(x^{(k)}\right)\right| /\left\|d^{(0, k)}\right\|^{n}\right\}>0$.

Now, we consider Steffensen's iteration method
(2.1)

$$
x^{(k+1)}=x^{(k)}-\Delta X\left(x^{(k)}\right)\left(\Delta^{2} X\left(x^{(k)}\right)\right)^{-1} \Delta x\left(x^{(k)}\right),
$$

where an n-dimensional vector $\Delta x(x)$, and $n \times n$ matrices $\Delta X(x)$ and $\Delta^{2} X(x)$ are given by

$$
\begin{aligned}
& \Delta x(x)=f^{(1)}(x)-x \\
& \Delta X(x)=\left(f^{(1)}(x)-x, \cdots, f^{(n)}(x)-f^{(n-1)}(x)\right)
\end{aligned}
$$

and
$\Delta^{2} X(x)=\left(f^{(2)}(x)-2 f^{(1)}(x)+x, \cdots, f^{(n+1)}(x)-2 f^{(n)}(x)+f^{(n-1)}(x)\right)$.
In this paper, we show the following
Theorem 1. Under the conditions (A.1)-(A.5), there exists a constant M such that an estimate of the form

$$
\left\|x^{(k+1)}-\bar{x}\right\| \leq M\left\|x^{(k)}-\bar{x}\right\|^{2}
$$

holds, provided that the $x^{(k)}$ generated by (2.1) are sufficiently close to the solution \bar{x} of (1.1).

For the proof of Theorem 1, we need the following four lemmas:
Lemma 1 ([2, Lemma 1]). Let A and C be $n \times n$ matrices and assume that A is invertible, with $\left\|A^{-1}\right\| \leq K_{1}$. If $\|A-C\| \leq K_{2}$ and $K_{1} K_{2}$ <1, then C is also invertible, and $\left\|C^{-1}\right\| \leq K_{1} /\left(1-K_{1} K_{2}\right)$.

Lemma 2. Under the conditions (A.1)-(A.5), there exists a constant L_{1} such that the inequality

$$
\begin{equation*}
\left\|\left(D\left(x^{(k)}\right)\right)^{-1}\right\| \leq L_{1}\left\|d^{(0, k)}\right\|^{-1} \tag{2.2}
\end{equation*}
$$

holds for $x^{(k)}$ sufficiently close to \bar{x}.
Lemma 3. Under the conditions (A.1)-(A.5), $n \times n$ matrices $\Delta X\left(x^{(k)}\right)$ and $\Delta^{2} X\left(x^{(k)}\right)$ are invertible, and there exist constants L_{2} and L_{5} such that the inequalities

$$
\begin{align*}
& \left\|\left(\Delta X\left(x^{(k)}\right)\right)^{-1}\right\| \leq L_{2}\left\|d^{(0, k)}\right\|^{-1}, \tag{2.3}\\
& \left\|\left(U^{2} X\left(x^{(k)}\right)\right)^{-1}\right\| \leq L_{5}\left\|d^{(0, k)}\right\|^{-1} \tag{2.4}
\end{align*}
$$

hold for $x^{(k)}$ sufficiently close to \bar{x}.
Lemma 4 ([2, Lemma 5]). Let an $n \times n$ matrix A be invertible. Let U and V be $n \times m$ matrices such as $m \leq n$. Then $A+U V^{*}$ is invertible if and only if $I+V^{*} A^{-1} U$ is invertible, and then

$$
\left(A+U V^{*}\right)^{-1}=A^{-1}-A^{-1} U\left(I+V^{*} A^{-1} U\right)^{-1} V^{*} A^{-1}
$$

where V^{*} is the transposed matrix of V.
Lemmas 1 and 2 are used in proving Lemma 3. Since the proofs
of the inequalities (2.2)-(2.4) are similar to those of Lemmas 2-4 in [2], respectively, they will not be given here. Lemma 4 may be used for determining $\left(U^{2} X\left(x^{(k)}\right)\right)^{-1}$, and is called the Sherman-MorrisonWoodbury formula [3, p. 50].

Remark 1. By the definition, we have

$$
\begin{equation*}
\Delta^{2} X\left(x^{(k)}\right)=(J(\bar{x})-I) \Delta X\left(x^{(k)}\right)+Y\left(x^{(k)}\right), \tag{2.5}
\end{equation*}
$$

where $Y\left(x^{(k)}\right)$ is an $n \times n$ matrix. By (A.1)-(A.3), we may choose a constant L_{3} such that, for $x^{(k)}$ sufficiently close to \bar{x},

$$
\begin{equation*}
\left\|Y\left(x^{(k)}\right)\right\| \leq L_{3}\left\|d^{(0, k)}\right\|^{2} \tag{2.6}
\end{equation*}
$$

Here we note that the inequality (2.4) holds with $L_{5}=L_{2} / L_{4}$ by choosing a constant L_{4} so as to satisfy

$$
\begin{equation*}
1-\|J(\bar{x})\|-L_{2} L_{3}\left\|d^{(0, k)}\right\| \geq L_{4}>0 \tag{2.7}
\end{equation*}
$$

3. The proof of Theorem 1. We shall prove Theorem 1. As may be seen by Remark 1 in § 2, we also have

$$
\begin{equation*}
\Delta x\left(x^{(k)}\right)=(J(\bar{x})-I) d^{(0, k)}+\xi\left(x^{(k)}\right) \tag{3.1}
\end{equation*}
$$

where $\xi\left(x^{(k)}\right)$ is an n-dimensional vector and

$$
\begin{equation*}
\left\|\xi\left(x^{(k)}\right)\right\| \leq L_{6}\left\|d^{(0, k)}\right\|^{2} \tag{3.2}
\end{equation*}
$$

a constant L_{6} being suitably chosen.
We observe that, from (2.5), by Lemma 3 and (A.3), $\Delta X\left(x^{(k)}\right)+$ $(J(\bar{x})-I)^{-1} Y\left(x^{(k)}\right)$ is invertible, while we have shown in Lemma 3 that $\Delta X\left(x^{(k)}\right)$ is also invertible. Then, we may apply Lemma 4 for $m=n$ to $\Delta X\left(x^{(k)}\right)+(J(\bar{x})-I)^{-1} Y\left(x^{(k)}\right)$ and obtain

$$
\begin{align*}
\left(\Delta^{2} X\left(x^{(k)}\right)\right)^{-1}= & \left\{\left(\Delta X\left(x^{(k)}\right)\right)^{-1}-\left(\Delta X\left(x^{(k)}\right)\right)^{-1}(J(\bar{x})-I)^{-1}\right. \\
& \cdot\left[I+Y\left(x^{(k)}\right)\left(\Delta X\left(x^{(k)}\right)\right)^{-1}(J(\bar{x})-I)^{-1}\right]^{-1} \tag{3.3}\\
& \left.\cdot Y\left(x^{(k)}\right)\left(\Delta X\left(x^{(k)}\right)\right)^{-1}\right\}(J(\bar{x})-I)^{-1} .
\end{align*}
$$

Substituting (3.1) and (3.3) into (2.1), it yields

$$
\begin{equation*}
x^{(k+1)}-\bar{x}=p\left(x^{(k)}\right)+q\left(x^{(k)}\right) \tag{3.4}
\end{equation*}
$$

where

$$
\begin{gather*}
p\left(x^{(k)}\right)=(J(\bar{x})-I)^{-1}\left[I+Y\left(x^{(k)}\right)\left(\Delta X\left(x^{(k)}\right)\right)^{-1}\right. \tag{3.5}\\
\left.\cdot(J(\bar{x})-I)^{-1}\right]^{-1} Y\left(x^{(k)}\right)\left(\Delta X\left(x^{(k)}\right)\right)^{-1} d^{(0, k)}, \\
q\left(x^{(k)}\right)=-\Delta X\left(x^{(k)}\right)\left(\Delta^{2} X\left(x^{(k)}\right)\right)^{-1} \xi\left(x^{(k)}\right) \tag{3.6}
\end{gather*}
$$

Now, as for $p\left(x^{(k)}\right)$, we first obtain an estimate

$$
\begin{equation*}
\left\|p\left(x^{(k)}\right)\right\| \leq L_{3} L_{5}\left\|d^{(0, k)}\right\|^{2} \tag{3.7}
\end{equation*}
$$

from (3.5), by (2.3), (2.6) and (2.7). Since $\left\|D\left(x^{(k)}\right)\right\| \leq \sum_{i=0}^{n-1}\left\|d^{(i, k)}\right\|$, we have $\left\|D\left(x^{(k)}\right)\right\| \leq\left(\sum_{i=0}^{n-1} M^{i}\right)\left\|d^{(0, k)}\right\|$, by using the fact that $\left\|d^{(i+1, k)}\right\| \leq$ $M\left\|d^{(i, k)}\right\|(0<M<1)$ for $i=0,1,2, \cdots$, so that
(3.8) $\quad\left\|\Delta X\left(x^{(k)}\right)\right\| \leq L_{7}\left\|d^{(0, k)}\right\|$
holds for a constant L_{7} chosen suitably. Hence, as for $q\left(x^{(k)}\right)$, we next obtain an estimate

$$
\begin{equation*}
\left\|q\left(x^{(k)}\right)\right\| \leq L_{5} L_{6} L_{7}\left\|d^{(0, k)}\right\|^{2}, \tag{3.9}
\end{equation*}
$$

from (3.6), by (2.4), (3.2) and (3.8). Consequently, (3.4), together with (3.7) and (3.9), shows that Theorem 1 holds with $M=L_{5}\left(L_{3}+L_{6} L_{7}\right)$, as desired.

The author would like to express his hearty thanks to Prof. H. Mine of Kyoto University for many valuable suggestions.

References

[1] P. Henrici: Elements of Numerical Analysis. John Wiley, New York (1964).
[2] T. Noda: The Aitken-Steffensen formula for systems of nonlinear equations. Sûgaku, 33, 369-372 (1981) (in Japanese).
[3] J. M. Ortega and W. C. Rheinboldt: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970).

