19. Representations over G-Rings and Cohomology^{*)}

By Katsuo KAWAKUBO Osaka University

(Communicated by Kunihiko KODAIRA, M. J. A., Feb. 13, 1984)

§1. Introduction. Let G be a group. The word ring will always mean associative ring with an identity element 1. A G-ring is a ring Λ together with a G-action on Λ preserving the ring structure. Then we introduce a Grothendieck group $R(G, \Lambda)$ associated with the abelian semi-group consisting of representations over Λ . The group $R(G, \Lambda)$ is a generalization of the representation rings R(G) and RO(G).

The purpose of the present paper is to express $R(G, \Lambda)$ in terms of the cohomology $H^{1}(G; GL(n, \Lambda))$ of the group G with coefficients in a non-abelian group $GL(n, \Lambda)$ in the sense of Serre [3].

In some cases, $R(G, \Lambda)$ is isomorphic to an equivariant algebraic *K*-group $K^{o}(\Lambda; F_{f})_{d}$ and we can express $K^{o}(\Lambda; F_{f})_{d}$ in terms of the cohomology $H^{1}(G; GL(n, \Lambda))$. An interesting example is provided by Serre [3]. In fact the example was a starting point of the present investigation.

The consideration of the present paper will be used to prove an induction theorem for equivariant K-theory in a subsequent paper [2].

§ 2. $R(G, \Lambda)$. Let Λ be a G-ring. A Λ G-module is a module M over Λ together with a G-action on M such that

 $(*) \qquad \qquad g(\lambda_1 m_1 + \lambda_2 m_2) = (g\lambda_1)(gm_1) + (g\lambda_2)(gm_2)$

for any $g \in G$, $\lambda_i \in \Lambda$, $m_i \in M$. In this paper any modules are assumed to be finitely generated.

Then $R(G, \Lambda)$ is defined to be the abelian group given by generators [M] where M is a ΛG -module which is free over Λ , with relations

$$[M] = [M'] + [M'']$$

whenever $M \cong M' \oplus M''$.

When Λ is a commutative *G*-ring, we can consider a product $M_1 \otimes M_2$ of two ΛG -modules M_1, M_2 (see [1]). If M_1, M_2 are free over $\Lambda, M_1 \otimes M_2$ is also free over Λ . Hence this product induces a structure of commutative ring in $R(G, \Lambda)$.

Remark 2.1. If Λ is R (the field of the real numbers) or C (the field of the complex numbers) with trivial G-action, then $R(G, \Lambda)$ is nothing but the real representation ring RO(G) or the complex representation ring R(G) respectively.

^{*)} Dedicated to Prof. Minoru Nakaoka on his sixtieth birthday. Research supported in part by Grant-in-Aid for Scientific Research.

No. 2]

§3. $H^1(G; GL(n, \Lambda))$. Let us recall the first cohomology $H^1(G; \Gamma)$ of Serre [3]. A *G*-group is a group Γ together with a *G*-action on Γ preserving the group structure. Then a map $A: G \to \Gamma$ is called a *cocycle* if the following equality holds:

 $A(gg') = A(g) \cdot (g \cdot A(g'))$ for any $g, g' \in G$.

 \mathbf{Set}

 $Z^{1}(G; \Gamma) = \{A: G \rightarrow \Gamma \text{ cocycle}\}.$

Two elements A and B of $Z^{1}(G; \Gamma)$ are *cohomologous* (denoted by $A \sim B$) if and only if there exists an element $C \in \Gamma$ such that

 $B(g) = C^{-1} \cdot A(g) \cdot (g \cdot C)$ for any $g \in G$.

Then the relation \sim is an equivalence relation and the first cohomology $H^1(G; \Gamma)$ of G with coefficients in Γ is defined to be the quotient set

$$H^{1}(G; \Gamma) = Z^{1}(G; \Gamma) / \sim$$
.

The equivalence class including A is denoted by [A].

Notice that if Γ is non-abelian, there is no canonical group structure on $H^1(G; \Gamma)$ inherited from G and Γ in general. There is however a *distinguished* element represented by $A_0: G \to \Gamma$ with $A_0(g) = e$ (unit element of Γ) for all $g \in G$.

Let $GL(n, \Lambda)$ be the group of invertible $n \times n$ matrices over a Gring Λ . The G-action on each entry of a matrix induces a G-action on $GL(n, \Lambda)$, which makes $GL(n, \Lambda)$ a G-group.

Theorem 3.1. Let M be a free Λ -module of rank n. Then the isomorphism classes of ΛG -module structures on M are in one to one correspondence with $H^1(G; GL(n, \Lambda))$.

Outline of proof. Taking an arbitrary base of M, a G-action on M is expressed by a map

 $A: G \longrightarrow GL(n, \Lambda).$

One verifies that G acts on M satisfying the condition (*) in §2 if and only if A is a cocycle. Furthermore two cocycles A and B represent isomorphic ΛG -modules if and only if A and B are cohomologous.

§ 4. Grothendieck group. Denote by (**) $\coprod_{n>0} H^1(G; GL(n, \Lambda))$

the disjoint union of cohomologies $H^1(G; GL(n, \Lambda))$ where we set $H^1(G; GL(0, \Lambda)) = \{0\}$. An abelian semi-group structure is imposed on it as follows. Let $A: G \rightarrow GL(m, \Lambda)$ (resp. $B: G \rightarrow GL(n, \Lambda)$) represent an arbitrary element of $H^1(G; GL(m, \Lambda))$ (resp. $H^1(G; GL(n, \Lambda))$). Then we define $D: G \rightarrow GL(m+n, \Lambda)$ by

$$D(g) = \begin{pmatrix} A(g) & 0 \\ 0 & B(g) \end{pmatrix}.$$

Clearly D is a cocycle and the assignment $(A, B) \mapsto D$ induces a map

 $\Phi: H^{1}(G; GL(m, \Lambda)) \times H^{1}(G; GL(n, \Lambda)) \longrightarrow H^{1}(G; GL(m+n, \Lambda)).$

One verifies that $\Phi([A], [B]) = \Phi([B], [A])$ and that Φ gives an abelian

semi-group structure in the set (**) above. The Grothendieck group associated with the abelian semi-group above is denoted by

 $K(\coprod_{n>0} H^1(G; GL(n, \Lambda))).$

When Λ is a commutative *G*-ring, we define $D': G \rightarrow GL(mn, \Lambda)$ by $D'(g) = A(g) \otimes B(g)$

the tensor product of the matrices A(g) and B(g) for $g \in G$. Then one verifies that D' is a cocycle. Moreover it is easy to see that the assignment $(A, B) \mapsto D'$ induces a map

 $\Psi: H^1(G; GL(m, \Lambda)) \times H^1(G; GL(n, \Lambda)) \longrightarrow H^1(G; GL(mn, \Lambda))$ and that Φ and Ψ give a commutative semi-ring structure in the set (**) above. Hence the Grothendieck group (***) has an induced commutative ring structure.

If the ring Λ is such that, given m, n > 0, $\Lambda^m \cong \Lambda^n$ (forgetting *G*-action) only if m=n, we say that Λ has *invariant basis number* (abbreviated IBN).

Theorem 4.1. If Λ has IBN, then we have an isomorphism $R(G, \Lambda) \cong K(\coprod_{n>0} H^1(G; GL(n, \Lambda)))$

of abelian groups. When Λ is commutative, both terms have commutative ring structures and \cong stands for a ring isomorphism.

Proof. Theorem 4.1 follows easily from Theorem 3.1.

§ 5. Equivariant algebraic K-theory and examples. In [1], we introduced two kinds of equivariant algebraic K-groups $K^{a}(\Lambda; F)_{a}$ and $K^{a}(\Lambda; F)_{e}$ for each family F of ΛG -modules.

We now give examples of families:

 $F_a = \{ all \ AG \text{-modules} \}$

 $F_f = \{ all \ AG \text{-modules which are free over } A \}$

 $F_{tf} = \{ all torsion free \Lambda G - modules \}.$

Lemma 5.1. If a G-ring Λ is such that every projective module over Λ is stably free, then we have an isomorphism

$$K^{G}(\Lambda; F_{f})_{d} \cong R(G, \Lambda)$$

of abelian groups. When Λ is commutative, both terms have commutative ring structures and \cong stands for a ring isomorphism.

By combining Theorem 4.1 and Lemma 5.1, we have

Theorem 5.2. Under the condition of Lemma 5.1, we have an isomorphism

$$K^{G}(\Lambda; F_{f})_{d} \cong K(\coprod_{n \geq 0} H^{1}(G; GL(n, \Lambda)))$$

of abelian groups. When Λ is commutative, both terms have commutative ring structures and \cong stands for a ring isomorphism.

As examples satisfying the condition of Lemma 5.1, we have

Proposition 5.3. If a G-ring Λ is a field, a skew field, a principal ideal domain, or a local ring, we have

(***)

$$K^{G}(\Lambda; F_{f})_{d} \cong R(G, \Lambda) \cong K(\coprod_{n \ge 0} H^{1}(G; GL(n, \Lambda))).$$

Let K/k be a Galois extension and G be the Galois group of K/k. Then K is a G-ring in our sense and we have

Corollary 5.4. $K^{o}(K; F_{a})_{d} \cong K^{o}(K; F_{tf})_{d} \cong K^{o}(K; F_{f})_{d} \cong R(G, K)$ $\cong Z.$ Here Z denotes the group of integers. If the characteristic (char K) of K is zero or (char K, |G|)=1, then d in the formula can be replaced by e. Here |G| denotes the order of G.

Proof. According to Serre [3], the first cohomology $H^1(G; GL(n, K))$ vanishes for all $n \ge 1$. It follows that the abelian semi-group (**) in §4 is isomorphic to the semi-group of non-negative integers. Hence the Grothendieck group (***) in §4 is isomorphic to Z. Accordingly the isomorphisms (III) and (IV) follow from Proposition 5.3, while the isomorphisms (I) and (II) are easy to prove. If char K is zero or (char K, |G| = 1, then every short exact sequence of KG-modules is split exact. Hence the relations to define $K^o(K; F)_d$ and $K^o(K; F)_e$ are equivalent in this case.

References

- Kawakubo, K.: G-vector bundles and F-projective modules. Proc. Japan Acad., 59A, 248-251 (1983).
- [2] ——: Cohomology of groups and induction theorems (to appear).
- [3] Serre, J. P.: Cohomologie Galoisienne. Lect. Notes in Math., vol. 5, Springer (1964).