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§1. Introduction. Let G be a group. The word ring will always
mean associative ring with an identity element 1. A G-ring is a ring
A together with a G-action on A preserving the ring structure. Then
we introduce a Grothendieck group R(G, 4) associated with the abelian
semi-group consisting of representations over 4. The group R(G, 4)
is a generalization of the representation rings R(G) and RO(G).

The purpose of the present paper is to express R(G, 4) in terms
of the cohomology H'(G ; GL(n, A)) of the group G with coefficients in
a non-abelian group GL(n, A) in the sense of Serre [3].

In some cases, R(G, 4) is isomorphic to an equivariant algebraic
K-group K%4; F;), and we can express K°(4; F';), in terms of the co-
homology H'(G; GL(n, 4)). An interesting example is provided by
Serre [8]. In fact the example was a starting point of the present
investigation.

The consideration of the present paper will be used to prove an
induction theorem for equivariant K-theory in a subsequent paper [2].

§2. R(G,A4). Let 4 bea G-ring. A AG-module is a module M
over A together with a G-action on M such that
(x) 9QAmy+2my) = (94,)(gm)+ (92,)(gm.)
for any ge G, 3,€ 4, m,e M. In this paper any modules are assumed
to be finitely generated.

Then R(G, A) is defined to be the abelian group given by generators
[M] where M is a AG-module which is free over 4, with relations

[M]=[M']1+[M"]
whenever M=M'®M".

When 4 is a commutative G-ring, we can consider a product
M,®M, of two AG-modules M,, M, (see [1]). If M,, M, are free over
A, M\@M, is also free over 4. Hence this product induces a structure
of commutative ring in R(G, 4).

Remark 2.1. If 41is R (the field of the real numbers) or C (the
field of the complex numbers) with trivial G-action, then R(G, 4) is
nothing but the real representation ring RO(G) or the complex repre-
sentation ring R(G) respectively.
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§3. H'G; GL(n, 4)). Let us recall the first cohomology H'(G ; I")
of Serre [3]. A G-group is a group I together with a G-action on I"
preserving the group structure. Then a map A: G-I is called a
cocycle if the following equality holds:

A(g9)=A(9)-(9-A(g"))  for any 9,9 €G.
Set
Z(G; I''={A: G—I cocycle}.
Two elements A and B of Z'(G ; I') are cohomologous (denoted by A ~ B)
if and only if there exists an element C ¢ I" such that
B(g)=C-'-A(9)-(g-C) for any g € G.
Then the relation ~ is an equivalence relation and the first cohomology
HY(G; ') of G with coefficients in I" is defined to be the quotient set
H(G; IM=Z'(G; )] ~.
The equivalence class including A is denoted by [A].

Notice that if I" is non-abelian, there is no canonical group struc-
ture on H'(G ; I') inherited from G and I" in general. There is however
a distinguished element represented by A,: G—I" with A g)=e (unit
element of I') for all g ¢ G.

Let GL(n, 4) be the group of invertible n X% matrices over a G-
ring 4. The G-action on each entry of a matrix induces a G-action
on GL(n, 4), which makes GL(n, 4) a G-group.

Theorem 3.1. Let M be a free A-module of rank n. Then the
isomorphism classes of AG-module structures on M are in one to one
correspondence with H'(G ; GL(n, A)).

Outline of proof. Taking an arbitrary base of M, a G-action on
M is expressed by a map

A: G—>GL(n, A).

One verifies that G acts on M satisfying the condition (x) in § 2 if
and only if A is a cocycle. Furthermore two cocycles A and B repre-
sent isomorphic 4G-modules if and only if A and B are cohomologous.

§4. Grothendieck group. Denote by
(xx) [210 HY(G; GL(n, 4))

the disjoint union of cohomologies H'(G; GL(n, A)) where we set
H'(G; GL(0, 4))={0}. An abelian semi-group structure is imposed on
it as follows. Let A:G—GL(m, 4) (resp. B: G—GL(n, A)) represent
an arbitrary element of H'(G ; GL(m, A)) (resp. H(G ; GL(n, 4))). Then
we define D: G—-GL(m+n, A) by
_(Al@ O )

Dig) ( 0 B

Clearly D is a cocycle and the assignment (4, B)—D induces a map
¢ : H(G; GL(m, A)) x H(G ; GL(n, A))—>H(G ; GL(m+mn, 4)).

One verifies that &({A], [B])=9®([B],[A]) and that @ gives an abelian
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semi-group structure in the set (xx) above. The Grothendieck group
associated with the abelian semi-group above is denoted by
(%) K(]] HY(G ; GL(n, A))).

n>0

When 4 is a commutative G-ring, we define D’ : G—GL(mn, A) by
D'(9)=A(9)®B(g)
the tensor product of the matrices A(g) and B(g) for g€ G. Then
one verifies that D’ is a cocycle. Moreover it is easy to see that the
assignment (4, B)—~ D’ induces a map
¥ : H(G ; GL(m, A)) x H(G ; GL(n, 4))—>H'(G ; GL(mn, A))

and that @ and ¥ give a commutative semi-ring structure in the set
(xx) above. Hence the Grothendieck group (xxx) has an induced com-
mutative ring structure.

If the ring 4 is such that, given m,n >0, A= 4" (forgetting G-
action) only if m=mn, we say that 4 has itnvariant basis number (ab-
breviated IBN).

Theorem 4.1. If A has IBN, then we have an isomorphism

R(G, ,/I)EK(n]E[O H' (G ; GL(n, A4)))

of abelian groups. When A is commutative, both terms have com-
mutative ring structures and = stands for a ring isomorphism.

Proof. Theorem 4.1 follows easily from Theorem 3.1.

§5. Equivariant algebraic K-theory and examples. In [1], we
introduced two kinds of equivariant algebraic K-groups K¢(4 ; F), and
K¢ ; F), for each family F' of AG-modules.

We now give examples of families :

F,={all 4G-modules}
F,={all AG-modules which are free over A}
F,,={all torsion free 4G-modules}.

Lemma 5.1. If a G-ring A is such that every projective module

over A is stably free, then we have an isomorphism

Ké(4; Fpy=R(G, 1)
of abelian groups. When A is commutative, both terms have com-
mutative ring structures and = stands for a ring isomorphism.

By combining Theorem 4.1 and Lemma 5.1, we have

Theorem 5.2. Under the condition of Lemma 5.1, we have an
isomorphism

Ké(UA; Fp,=K( ]S[0 HY(G; GL(n, 4)))

of abelian groups. When A is commutative, both terms have com-
mutative ring structures and = stands for a ring isomorphism.
As examples satisfying the condition of Lemma 5.1, we have
Proposition 5.3. If a G-ring A is o field, a skew field, a principal
ideal domain, or a local ring, we have
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Ké(4; F)),=R(G, H)=K( ]_[0 H'Y(G; GL(n, 4))).

Let K/k be a Galois extension and G be the Galois group of K/k.
Then K is a G-ring in our sense and we have
Corollary 5.4. K°K;F,),=K°K; F,), = K°K; F,), = R(G, K)
(I) (ID) (I11)

=Z7. Here Z denotes the group of integers. If the characteristic
(1V)

(char K) of K is zero or (char K, |G|)=1, then d in the formula can be
replaced by e. Here |G| denotes the order of G.

Proof. According to Serre [3], the first cohomology H'(G;
GL(n, K)) vanishes for all n>1. It follows that the abelian semi-group
(xx) in §4 is isomorphic to the semi-group of non-negative integers.
Hence the Grothendieck group (xxx) in §4 is isomorphic to Z. Ac-
cordingly the isomorphisms (III) and (IV) follow from Proposition 5.3,
while the isomorphisms (I) and (II) are easy to prove. If char K is
zero or (char K, |G|)=1, then every short exact sequence of KG-modules
is split exact. Hence the relations to define K4(K; F'), and K%K ; F),
are equivalent in this case.
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