
66 Proc. Japan Acad., 50, Ser. A (1984) [Vol. 60 (A),

19. Representations over G.Rings and Cohomology*

By Katsuo KAWAKUBO
Osaka University

(Communicated by Kunihiko KODAIRA, M. J. A., Feb. 13, 1984)

1. Introduction. Let G be a group. The word ring will always
mean associative ring with an identity element 1. A G-ring is a ring
A together with a G-action on A preserving the ring structure. Then
we introduce a Grothendieck group R(G, 4) associated with the abelian
semi-group consisting of representations over A. The group R(G, A)
is a generalization o the representation rings R(G) and RO(G).

The purpose of the present paper is to express R(G, 4) in terms
.of the cohomology HX(G; GL(n, /)) of the group G with coefficients in
a non-abelian group GL(n, 4) in the sense o Serre [3].

In some cases, R(G, ) is isomorphic to an equivariant algebraic
K-group K(/; Fz) and we can express Ko(A;F) in terms of the co-
homology H(G;GL(n,A)). An interesting example is provided by
Serre [3]. In act the example was a starting point of the present
investigation.

The consideration ot the present paper will be used to prove an
induction theorem or equivariant K-theory in a subsequent paper [2].

2. R(G, 4). Let A be a G-ring. A IG-module is a module M
over /together with a G-action on M such that
( * ) g(21m1-}- 2m.)-- (g21)(gm)- (g2)(gm)
or any g e G, 2 e A, m e M. In this paper any modules are assumed
to be finitely generated.

Then R(G, A) is defined to be the abelian group given by generators
[M] where M is a AG-module which is tree over A, with relations

[M]--[M’]+[M"]
whenever M

When A is a commutative G-ring, we can consider a product
M(R)M. of two AG-modules M,M (see [1]). If M, M. are ree over
A, M(R)M is also ree over /. Hence this product induces a structure
of commutative ring in R(G, ./I).

Remark 2.1. I A is R (the field of the real numbers) or C (the
field of the complex numbers) with trivial G-action, then R(G,.d) is
nothing but the real representation ring RO(G) or the complex repre-
sentation ring R(G) respectively.
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3. HI(G GL(n, A)). Let us recall the first cohomology HI(G 1")
of Serre [3]. A G-group is a group F together with a G-action on F
preserving the group structure. Then a map A" G-+F is called a
cocycle if the following equality holds"

A(gg’)= A(g). (g. A(g’)) for any g, g’ e G.
Set

Z(G F)={A: G-F cocycle}.
Two elements A and B of Z(G F) are cohomologous (denoted by A- B)
if and only if there exists an element C e F such that

B(g)=C-.A(g).(g.C) for any g e G.
Then the relation is an equivalence relation and the first cohomology
H(G F) of G with coefficients in F is defined to be the quotient set

H’(G F)=Z’(G F)/.
The equivalence class including A is denoted by [A].

Notice that ff F is non-abelian, there is no canonical group struc-
ture on H(G F) inherited rom G and F in general. There is however
a distinguished element represented by A0: G-+F with Ao(g)--e (unit
element o F) or all g e G.

Let GL(n, A)be the group of invertible nn matrices over a G-
ring A. The G-action on each entry o a matrix induces a G-action
.on GL(n, A), which makes GL(n, A) a G-group.

Theorem 3.1. Let M be a free A-module of rank n. Then the
isomorphism classes of AG-module structures on M are in one to one
correspondence with H(G GL(n, A)).

Outline of proof. Taking an arbitrary base o M, a G-action on
M is expressed by a map

A G )GL(n, A).
One verifies that G acts on M satisfying the condition (.) in 2 if

and only ff A is a cocycle. Furthermore two cocycles A and B repre-
sent isomorphic AG-modules if and only if A and B are cohomologous.

4. Grothendieck group. Denote by
(**) [I H(G GL(n, A))

nO

he disjoint union o eohomologies H(G;GL(n,A)) where we set
H(G; GL(O, A))={O}. An abelian semi-group structure is imposed on
it as ollows. Let A:G-+GL(m,A) (resp. B:G--GL(n,A)) represent
an arbitrary element o H(G GL(m, A)) (resp. H(G GL(n, A))). Then
we define D: G---GL(m+ n, A) by

D(g)_(A(g) 0 ).\ 0 B(g)
Clearly D is a cocycle and the assignment (A, B)D induces a map

H(G GL(m, A)) H(G GL(n, A)) ;H(G GL(m+n, A)).
One verifies that ([A], [B])=([B], [A]) and that gives an abelian
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semi-group structure in the set (**) above. The Grothendieck group
associated with the abelian semi-group above is denoted by
(***) K( ]] HI(G VL(n, A))).

n>O

When A is a commutative. G-ring, we define D’: G-GL(mn, A) by
D’(g)--A(g)(R)B(g)

the tensor product of the matrices A(g) and B(g) for g e G. Then
one verifies that D’ is a cocycle. Moreover it is easy to see that the
assignment (A, B)D’ induces a map

: Hi(G; GL(m, A)) H(G GL(n, A)) >H(G GL(mn, A))
and that and r give a commutative semi-ring structure in the set
(**) above. Hence the Grothendieck group (***) has an induced com-
mutative ring structure.

If the ring A is such that, given m, nO, A’*A (forgetting G-
action) only if m-n, we say that A has invariant basis number (ab-
breviated IBN).

Theorem 4.1. If A has IBN, then we have an isomorphism
R(G, A)-K( I H(G GL(n, A)))

n20

of abelian groups. When A is commutative, both terms have com-
mutative ring structures and - stands for a ring isomorphism.

Proof. Theorem 4.1 follows easily from Theorem 3.1.

5. Equivariant algebraic K.theory and examples. In [1], we
introduced two kinds o equivariant algebraic K-groups K(A F) and
K(A ;F), for each family F of AG-modules.

We now give examples of families:

F {all AG-modules}
F={all AG-modules which are free over A}
Ft={all torsion free AG-modules}.

Lemma 5.1. If a G-ring A is such that every projective module
over A is stably free, then we have an isomorphism

Ke(A F)-R(G, A)
of abelian groups. When A is commutative, both terms have com-
mutative ring structures and -- stands for a ring isomorphism.

By combining Theorem 4.1 and Lemma 5.1, we. have
Theorem 5.2. Under the condition of Lemma 5.1, we have an

isomorphism
Ke(A F),-K( [ H(G GL(n, A)))

n>O

of abelian groups. When A is commutative, both terms have com-

mutative ring structures and - stands for a ring isomorphism.
As examples satisfying the condition of Lemma 5.1, we have

Proposition 5.3. If a G-ring A is a field, a skew field, a principal
ideal domain, or a local ring, we have
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Ka(A F:)a-R(G, A)-K( Ifl Hi(G GL(n, A))).
nO

Let K/k be a Galois extension and G be the Galois group of K/k.
Then K is a G-ring in our sense and we have

Corollary 5.4. Ka(K F)a KV(K Rex)a K(K F:)a - R(G, K)
(I) (II) (III)

Z. Here Z denotes the group of integers. If the characteristic
(IV)

(char K) of K is zero or (char K, [G[)--1, then d in the formula can be
replaced by e. Here]G] denotes the order of G.

Proof. According to Serre [3], the first eohomology H’(G;
GL(n, K)) vanishes for all nl. It follows that the abelian semi-group
(**) in 4 is isomorphic to the semi-group of non-negative integers.
Hence the Grothendieek group (***) in 4 is isomorphic to Z. Ac-
cordingly the isomorphisms (IIi) and (IV) follow from Proposition 5.3,
while, the isomorphisms (I) and (II) are easy to prove. If char K is
zero or (char K, G I)--1, then every short exact sequence of KG-modules
is split exact. Hence the relations to define K(K;F) and K(K;F)
are equivalent in this ease..
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