48. On the Resolution of Two-dimensional Singularities

By Mutsuo OKA

Department of Mathematics, Faculty of Sciences, Tokyo Institute of Technology

(Communicated by Kunihiko KODAIRA, M. J. A., May 12, 1984)

§1. Introduction. Let $f(z_1, \dots, z_n)$ be a germ of an analytic function at the origin such that f(0)=0 and f has an isolated critical point at the origin. We assume that f has a non-degenerate Newton boundary. Let V be a germ of hypersurface $f^{-1}(0)$. Let $\Gamma^*(f)$ be the dual Newton diagram and let Σ^* be a simplicial subdivision of $\Gamma^*(f)$. It is known that there is a canonical resolution $\pi: \tilde{V} \to V$ which is associated with Σ^* . ([1]). However the process to get Σ^* from $\Gamma^*(f)$ is not unique and a "bad" Σ^* gives unnecessary exceptional divisors. The purpose of this paper is to show that in the case n=3, there is a canonical subdivision Σ^* of $\Gamma^*(f)$ so that the resolution graph is obtained by a canonical surgery from $S_2\Gamma^*(f)$ (=two-skeleton of $\Gamma^*(f)$). See Theorem (5.1).

§2. Newton boundary and the dual Newton diagram. Let $f(z_1, \dots, z_n) = \sum_{\nu} a_{\nu} z^{\nu}$ be the Taylor expansion of f where $z^{\nu} = z_1^{\nu_1} \cdots z_n^{\nu_n}$. Recall that the Newton boundary $\Gamma(f)$ is the union of the compact faces of $\Gamma_+(f)$ where $\Gamma_+(f)$ is the convex hull of the union of the subsets $\{\nu + (\mathbf{R}^+)^n\}$ for ν such that $a_{\nu} \neq 0$. For any closed face Δ of $\Gamma(f)$, we associate the polynomial $f_{\Delta}(z) = \sum_{\nu \in \Delta} a_{\nu} z^{\nu}$. We say that f is nondegenerate if f_{Δ} has no critical point in $(\mathbf{C}^*)^n$ for any $\Delta \in \Gamma(f)$ ([2]).

Let N^* be the space of positive vectors in the dual space of \mathbb{R}^n . For any vector $P = {}^t(p_1, \dots, p_n)$ of N^* , we associate the linear function $P(x) = \sum_i p_i x_i$ on $\Gamma_+(f)$ and let d(P) be the minimal value of P(x) on $\Gamma_+(f)$ and let $\Delta(P) = \{x \in \Gamma_+(f) ; P(x) = d(P)\}$. We introduce an equivalence relation \sim on N^* by $P \sim Q$ if and only if $\Delta(P) = \Delta(Q)$. For any face Δ of $\Gamma_+(f)$, let $\Delta^* = \{P \in N^* ; \Delta(P) = \Delta\}$. The collection of Δ^* gives a polyhedral decomposition of N^+ which we call the dual Newton diagram of f and we denote it by $\Gamma^*(f)$. $\Delta(P)$ is a compact face of $\Gamma(f)$ if and only if P is strictly positive. We say that a subdivision Σ^* of $\Gamma^*(f)$ is a simplicial subdivision if the following conditions are satisfied ([1]).

(i) Σ^* is a subdivision by the cones over a simplicial polyhedron whose simplexes are spanned by primitive integral vectors with determinant ± 1 in the sense of § 3.

(ii) Let $\sigma = (P_1, \dots, P_n)$ be an (n-1)-simplex. Then there exists

a permutation τ of $\{1, \dots, n\}$ such that (2.1) $\Delta(P_{\tau(1)}) \supset \Delta(P_{\tau(2)}) \supset \dots \supset \Delta(P_{\tau(n)}).$

§3. Canonical simplicial subdivision. Let $P_i = {}^{t}(p_{1,i}, \dots, p_{n,i})$ $(i=1, \dots, k)$ be given primitive integral vectors of N^+ . We define a non-negative integer det (P_1, \dots, P_k) by the greatest common divisor of all $k \times k$ minors of the matrix $(p_{j,i})$ and we call det (p_1, \dots, p_k) the determinant of P_1, \dots, P_k .

Lemma (3.1). Let P and Q be given primitive integral vectors in N^+ . Let $c = \det(P, Q)$ and assume that c > 1. There exists a unique integer c_1 such that $0 < c_1 < c$ and $P_1 = (Q + c_1 P)/c$ is an integral vector on \overline{PQ} . We have $\det(P, P_1) = 1$ and $\det(P_1, Q) = c_1$.

Remark. By the abuse of language, we say that P_1 is on \overline{PQ} if the normalized vector $P'_1 = P_1/a$ is on \overline{PQ} where $a = (1+c_1)/c$.

Definition. Let \overline{PQ} be a line segment of $S_2\Gamma^*(f)$. We say that primitive vectors $\{P_1, \dots, P_k\}$ is the canonical primitive sequence on \overline{PQ} if the followings are satisfied.

(i) Let $c = \det(P, Q)$ and assume that c > 1. There exists positive integers $c = c_0 > c_1 > \cdots > c_k = 1$ such that $P_{i+1} = (Q + c_{i+1}P_i)/c_i$ for each *i*. $(P_0 = P_i)$

(ii) If c=1, k=1 and $P_1=P+Q$.

Lemma (3.2). Assume that $c = \det(P, Q) > 1$. Let P_1, \dots, P_k be the canonical primitive sequence on \overline{PQ} and let c_i $(i=1, \dots, k)$ be as above. Let $m_i = (c_{i-1} + c_{i+1})/c_i$. $(c_{k+1} = 0.)$ Then m_i $(i=1, \dots, k)$ are integers and $m_i \ge 2$ and the continuous fraction

$$m_1 - rac{1}{m_2 - \cdot} \cdot - rac{1}{m_k}$$

is equal to c/c_1 . Let $P_i = {}^{t}(p_{1,i}, \dots, p_{n,i})$. Then $m_i = (p_{j,i-1} + p_{j,i+1})/p_{j,i}$ for each j.

We say that a simplicial subdivision Σ^* is canonical if it gives the canonical primitive sequence on each line segment \overline{PQ} of $S_2\Gamma^*(f)$. The existence is derived from the following lemma (n=3).

Lemma (3.3). Let Δ be a triangle with primitive vectors P, Qand R as vertices. Let $c = \det(P, Q, R)$. We assume that $\det(p, Q)$ $= \det(P, R) = 1$ and c > 1. Then there exist unique c_1 and d_1 such that $0 < c_1 < c$, $0 \le d_1 < c$ and $T_1 = (R + c_1Q + d_1P)/c$ is an integral vector. T_1 divides Δ into three triangles with $\det(P, Q, T_1) = 1$, $\det(P, T_1, R) = c_1$, $\det(Q, T_1, R) = d_1$.

§4. Resolution of V. Let Σ^* be a simplicial subdivision of $\Gamma^*(f)$. For each (n-1)-simplex $\sigma = (P_1, \dots, P_n)$, we associate an *n*-dimensional Euclidean space C^n with coordinates $(y_{\sigma,1}, \dots, y_{\sigma,n})$ and a

No. 5]

birational mapping $\pi_{\sigma}: C_{\sigma}^{n} \to C_{\sigma}^{n}$ which is defined by $z_{i} = y_{\sigma,1}^{p_{i,1}} \cdots y_{\sigma,n}^{p_{i,n}}$. Let X be the union of C_{σ}^{n} which are glued along the images of π_{σ} . Let π be the projection and let \tilde{V} be the closure of $\pi^{-1}(V \cap (C^{*})^{n})$. It is known that $\pi: \tilde{V} \to V$ is a resolution of V ([1]). Let $d_{i} = d(P_{i})$ and $\Delta_{i} = \Delta(P_{i})$. We assume that $\Delta_{1} \supset \Delta_{2} \supset \cdots \supset \Delta_{n}$. We define $f_{\sigma}(y_{\sigma})$ and $g_{d_{i}}(y_{\sigma})$ by $f(\pi_{\sigma}(y_{\sigma})) = f_{\sigma}(y_{\sigma}) \prod_{i} y_{\sigma,i}^{d_{i}}$ and $f_{d_{i}}(\pi_{\sigma}(y_{\sigma})) = g_{d_{i}}(y_{\sigma}) \prod_{i} y_{\sigma,i}^{d_{i}}$. By the definition, \tilde{V} is defined by $f_{\sigma}(y_{\sigma}) = 0$ and $\tilde{V} \cap \{y_{\sigma,i} = 0\}$ is $\{y_{\sigma}; y_{\sigma,i} = 0$ and $g_{d_{i}}(y_{\sigma}) = 0$ }. Note that $g_{d_{i}}(y_{\sigma})$ is a function of $y_{\sigma,i+1}, \cdots, y_{\sigma,n}$. Thus $\tilde{V} \cap \{y_{\sigma,i} = 0\}$ is non-empty if and only if dim $\Delta_{i} > 0$. Let $E(P_{i}; \sigma) = \{y_{\sigma} \in \tilde{V}; y_{\sigma,i} = 0\}$. $\pi(E(P_{i}; \sigma)) = \{0\}$ if and only if P_{i} is strictly positive. The union of $E(P_{i}; \sigma)$ for simplexes σ which contain P_{i} is a divisor of V and we denote it by $E(P_{i})$. We say that vertices P_{1}, \cdots, P_{k} in Σ^{*} are adjacent if there is an (n-1)-simplex σ of Σ^{*} which contains P_{i}, \cdots, P_{k} .

Lemma (4.1). Let P_1, \dots, P_k be vertices of Σ^* with dim $\Delta(P_i) \ge 1$. $\bigcap_i E(P_i)$ is non-empty if and only if P_1, \dots, P_k are adjacent.

Lemma (4.2). Assume that P is a strictly positive vertex of Σ^* such that dim $\Delta(P)=1$. Then E(P) has r(P)+1 connected components. If n=3, they are rational curves. Here r(P) is the number of the integral points in $\Delta(P) - \partial \Delta(P)$.

Let $g(u_1, \dots, u_k)$ be a polynomial with support S(g). We say that g is globally non-degenerate (=0-non-degenerate in [7]) if $g_{\mathcal{A}}(u)$ has no critical point in $(\mathbb{C}^*)^k \cap g_{\mathcal{A}}^{-1}(0)$ for each \mathcal{A} .

The exceptional divisor E(P) has a canonical stratification in which each stratum is described by $g^{-1}(0)$ for some globally non-degenerate polynomial g.

Lemma (4.3) ([2], [5], [7]). Let $g(u_1, \dots, u_k)$ be a globally nondegenerate polynomial and let $V^* = g^{-1}(0) \cap (C^*)^k$. Then the Euler characteristic of V^* is $(-1)^{k+1}k!$ k-dim. volume S(g).

§ 5. Main result. We assume that n=3 and let $\pi: \tilde{V} \to V$ be the good resolution associated with Σ^* . Let Δ be a two dimensional face of $\Gamma(f)$. We define $g(\Delta)$ by the number of the integral points in $\Delta - \partial \Delta$. Our main result is

Theorem (5.1). Let $\pi: \tilde{V} \to V$ be as above. Then for a strictpositive vertex of Σ^* , we have

(i) If dim $\Delta(P)=2$, E(P) has genus $g(\Delta(P))$.

(ii) If dim $\Delta(P)=1$, E(P) is a disjoint union of r(P)+1 rational curves.

(iii) Assume that Σ^* is canonical. Then the resolution graph is obtained by a canonical surgery of $\Gamma^*(f)$ as follows: Let \overline{PQ} be a line segment of $\Gamma^*(f)$ and assume that P is strictly positive. Let $c = \det(P, Q)$ and assume that c > 1. Let c_1 be as Lemma (3.1). Let No. 5]

$$m_1 = rac{1}{m_2 - \ \cdot \ } - rac{1}{m_1}$$

be the continuous fraction of c/c_1 . We insert r(P, Q)+1 copies of chains of rational curves $-\stackrel{-m_1}{\cdots} \stackrel{-m_2}{\cdots} \stackrel{-m_k}{\cdots}$ between P and Q. Here r(P, Q) = r(P+Q). In the case of c=1, the chain is $-\stackrel{-1}{\cdots}$ by definition. If neither P nor Q is strictly positive, we do nothing. Those vertices which are not strictly positive are omitted from the resolution diagram after the surgery. Assume that dim $\Delta(P)=2$. Let Q_1, \cdots, Q_s be the vertices of Σ^* which are adjacent to P. Let $P={}^{\iota}(p_1, p_2, p_3)$ and $Q_i={}^{\iota}(q_{1,i}, q_{2,i}, q_{3,i})$ $(i=1, \cdots, s)$. (s is the number of one-dimensional boundaries of $\Delta(P)$.) Then the self-intersection number of E(P) is $-\sum_i^s (r(P, Q_i)+1)q_{1,i})/p_1$.

The proof is done by considering the divisor of the holomorphic function π^*z_1 on \tilde{V} and by the property $(\pi^*z_1) \cdot E(P) = 0$. Lemmas (3.2) and (4.3) and the following lemma play the key role in the proof.

Lemma (5.1). Let Δ be a compact polyhedron in \mathbb{R}^2 with integral points as vertices. Let $\Delta_1, \dots, \Delta_s$ be one dimensional faces of Δ . Then we have 2 volume $\Delta = 2 g(\Delta) + \sum_{i=1}^{s} (r(\Delta_i) + 1) - 2$.

Further details will be treated in [6].

References

- [1] Kempf, G., Knudsen, F., Mumford, D., and Saint-Donat, B.: Toroidal Embeddings. Lect. Notes in Math., vol. 339, Springer (1973).
- [2] Kouchnirenko, A. G.: Polyèdres de Newton et Nombres de Milnor. Invent. math., 32, 1-32 (1976).
- [3] Laufer, H. B.: Normal two-dimensional singularities. Ann. of Math. Studies, no. 71, Princeton Univ. Press (1971).
- [4] Mumford, D.: The topology of normal singularities of an algebraic surface and a criterion for simplicity. Publ. Math., 9, l'Inst. des hautes études sci. Paris (1961).
- [5] Oka, M.: On the topology of the Newton boundary II. J. Math. Soc. Japan, 32, 65-92 (1980).
- [6] Oka, M.: On the resolution of hypersurface singularities (to appear).
- [7] Varchenko, A. N.: Zeta-function of the Monodromy and Newton's diagram. Invent. math., 37, 253-262 (1976).