48. On the Resolution of Two-dimensional Singularities

By Mutsuo Oka
Department of Mathematics, Faculty of Sciences, Tokyo Institute of Technology
(Communicated by Kunihiko Kodaira, m. J. A., May 12, 1984)

§1. Introduction. Let $f\left(z_{1}, \cdots, z_{n}\right)$ be a germ of an analytic function at the origin such that $f(0)=0$ and f has an isolated critical point at the origin. We assume that f has a non-degenerate Newton boundary. Let V be a germ of hypersurface $f^{-1}(0)$. Let $\Gamma^{*}(f)$ be the dual Newton diagram and let Σ^{*} be a simplicial subdivision of $\Gamma^{*}(f)$. It is known that there is a canonical resolution $\pi: \tilde{V} \rightarrow V$ which is associated with Σ^{*}. ([1]). However the process to get Σ^{*} from $\Gamma^{*}(f)$ is not unique and a "bad" Σ^{*} gives unnecessary exceptional divisors. The purpose of this paper is to show that in the case $n=3$, there is a canonical subdivision Σ^{*} of $\Gamma^{*}(f)$ so that the resolution graph is obtained by a canonical surgery from $S_{2} \Gamma^{*}(f)$ ($=$ two-skeleton of $\Gamma^{*}(f)$). See Theorem (5.1).
§2. Newton boundary and the dual Newton diagram. Let $f\left(z_{1}, \cdots, z_{n}\right)=\sum_{\nu} a_{\nu} z^{\nu}$ be the Taylor expansion of f where $z^{\nu}=z_{1}^{\nu_{1}} \cdots z_{n}^{\nu_{n}}$. Recall that the Newton boundary $\Gamma(f)$ is the union of the compact faces of $\Gamma_{+}(f)$ where $\Gamma_{+}(f)$ is the convex hull of the union of the subsets $\left\{\nu+\left(\boldsymbol{R}^{+}\right)^{n}\right\}$ for ν such that $a_{\nu} \neq 0$. For any closed face Δ of $\Gamma(f)$, we associate the polynomial $f_{\Delta}(z)=\sum_{\nu \in \Delta} a_{\nu} z^{\nu}$. We say that f is nondegenerate if f_{Δ} has no critical point in $\left(C^{*}\right)^{n}$ for any $\Delta \in \Gamma(f)$ ([2]).

Let N^{+}be the space of positive vectors in the dual space of \boldsymbol{R}^{n}. For any vector $P=^{t}\left(p_{1}, \cdots, p_{n}\right)$ of N^{+}, we associate the linear function $P(x)=\sum_{i} p_{i} x_{i}$ on $\Gamma_{+}(f)$ and let $d(P)$ be the minimal value of $P(x)$ on $\Gamma_{+}(f)$ and let $\Delta(P)=\left\{x \in \Gamma_{+}(f) ; P(x)=d(P)\right\}$. We introduce an equivalence relation \sim on N^{+}by $P \sim Q$ if and only if $\Delta(P)=\Delta(Q)$. For any face Δ of $\Gamma_{+}(f)$, let $\Delta^{*}=\left\{P \in N^{+} ; \Delta(P)=\Delta\right\}$. The collection of Δ^{*} gives a polyhedral decomposition of N^{+}which we call the dual Newton diagram of f and we denote it by $\Gamma^{*}(f) . \quad \Delta(P)$ is a compact face of $\Gamma(f)$ if and only if P is strictly positive. We say that a subdivision Σ^{*} of $\Gamma^{*}(f)$ is a simplicial subdivision if the following conditions are satisfied ([1]).
(i) Σ^{*} is a subdivision by the cones over a simplicial polyhedron whose simplexes are spanned by primitive integral vectors with determinant ± 1 in the sense of $\S 3$.
(ii) Let $\sigma=\left(P_{1}, \cdots, P_{n}\right)$ be an $(n-1)$-simplex. Then there exists
a permutation τ of $\{1, \cdots, n\}$ such that

$$
\begin{equation*}
\Delta\left(P_{\tau(1)}\right) \supset \Delta\left(P_{\tau(2)}\right) \supset \cdots \supset \Delta\left(P_{\tau(n)}\right) . \tag{2.1}
\end{equation*}
$$

§3. Canonical simplicial subdivision. Let $P_{i}={ }^{t}\left(p_{1, i}, \cdots, p_{n, i}\right)$ $(i=1, \cdots, k)$ be given primitive integral vectors of N^{+}. We define a non-negative integer $\operatorname{det}\left(P_{1}, \cdots, P_{k}\right)$ by the greatest common divisor of all $k \times k$ minors of the matrix ($p_{j, i}$) and we call $\operatorname{det}\left(p_{1}, \cdots, p_{k}\right)$ the determinant of P_{1}, \cdots, P_{k}.

Lemma (3.1). Let P and Q be given primitive integral vectors in N^{+}. Let $c=\operatorname{det}(P, Q)$ and assume that $c>1$. There exists a unique integer c_{1} such that $0<c_{1}<c$ and $P_{1}=\left(Q+c_{1} P\right) / c$ is an integral vector on $\overline{P Q}$. We have $\operatorname{det}\left(P, P_{1}\right)=1$ and $\operatorname{det}\left(P_{1}, Q\right)=c_{1}$.

Remark. By the abuse of language, we say that P_{1} is on $\overline{P Q}$ if the normalized vector $P_{1}^{\prime}=P_{1} / a$ is on $\overline{P Q}$ where $a=\left(1+c_{1}\right) / c$.

Definition. Let $\overline{P Q}$ be a line segment of $S_{2} \Gamma^{*}(f)$. We say that primitive vectors $\left\{P_{1}, \cdots, P_{k}\right\}$ is the canonical primitive sequence on $\overline{P Q}$ if the followings are satisfied.
(i) Let $c=\operatorname{det}(P, Q)$ and assume that $c>1$. There exists positive integers $c=c_{0}>c_{1}>\cdots>c_{k}=1$ such that $P_{i+1}=\left(Q+c_{i+1} P_{i}\right) / c_{i}$ for each i. ($P_{0}=P$.)
(ii) If $c=1, k=1$ and $P_{1}=P+Q$.

Lemma (3.2). Assume that $c=\operatorname{det}(P, Q)>1$. Let P_{1}, \cdots, P_{k} be the canonical primitive sequence on $\overline{P Q}$ and let $c_{i}(i=1, \cdots, k)$ be as above. Let $m_{i}=\left(c_{i-1}+c_{i+1}\right) / c_{i} . \quad\left(c_{k+1}=0.\right)$ Then $m_{i}(i=1, \cdots, k)$ are integers and $m_{i} \geqq 2$ and the continuous fraction

$$
m_{1}-\frac{1}{m_{2}-\cdot \cdot-\frac{1}{m_{k}}}
$$

is equal to c / c_{1}. Let $P_{i}={ }^{t}\left(p_{1, i}, \cdots, p_{n, i}\right)$. Then $m_{i}=\left(p_{j, i-1}+p_{j, i+1}\right) / p_{j, i}$ for each j.

We say that a simplicial subdivision Σ^{*} is canonical if it gives the canonical primitive sequence on each line segment $\overline{P Q}$ of $S_{2} \Gamma^{*}(f)$. The existence is derived from the following lemma ($n=3$).

Lemma (3.3). Let Δ be a triangle with primitive vectors P, Q and R as vertices. Let $c=\operatorname{det}(P, Q, R)$. We assume that $\operatorname{det}(p, Q)$ $=\operatorname{det}(P, R)=1$ and $c>1$. Then there exist unique c_{1} and d_{1} such that $0<c_{1}<c, 0 \leqq d_{1}<c$ and $T_{1}=\left(R+c_{1} Q+d_{1} P\right) / c$ is an integral vector. T_{1} divides Δ into three triangles with $\operatorname{det}\left(P, Q, T_{1}\right)=1$, $\operatorname{det}\left(P, T_{1}, R\right)=c_{1}$, $\operatorname{det}\left(Q, T_{1}, R\right)=d_{1}$.
§4. Resolution of V. Let Σ^{*} be a simplicial subdivision of $\Gamma^{*}(f)$. For each ($n-1$)-simplex $\sigma=\left(P_{1}, \cdots, P_{n}\right)$, we associate an n dimensional Euclidean space C^{n} with coordinates ($y_{\sigma, 1}, \cdots, y_{\sigma, n}$) and a
birational mapping $\pi_{\sigma}: C_{o}^{n} \rightarrow C_{\sigma}^{n}$ which is defined by $z_{i}=y_{\sigma, 1}^{p_{i, 1}} \cdots y_{\sigma, n}^{p_{i}, n}$. Let X be the union of C_{σ}^{n} which are glued along the images of π_{σ}. Let π be the projection and let \tilde{V} be the closure of $\pi^{-1}\left(V \cap\left(C^{*}\right)^{n}\right)$. It is known that $\pi: \tilde{V} \rightarrow V$ is a resolution of V ([1]). Let $d_{i}=d\left(P_{i}\right)$ and Δ_{i} $=\Delta\left(P_{i}\right)$. We assume that $\Delta_{1} \supset \Delta_{2} \supset \cdots \supset \Delta_{n}$. We define $f_{\sigma}\left(\boldsymbol{y}_{\sigma}\right)$ and $g_{\Delta_{i}}\left(\boldsymbol{y}_{\sigma}\right)$ by $f\left(\pi_{\sigma}\left(\boldsymbol{y}_{\sigma}\right)\right)=f_{\sigma}\left(\boldsymbol{y}_{\sigma}\right) \prod_{i} y_{\sigma, i}^{d_{i}}$ and $f_{A_{i}}\left(\pi_{\sigma}\left(\boldsymbol{y}_{\sigma}\right)\right)=g_{d_{i}}\left(\boldsymbol{y}_{\sigma}\right) \prod_{i} y_{\sigma, i}^{d_{i}}$. By the definition, \tilde{V} is defined by $f_{\sigma}\left(\boldsymbol{y}_{\sigma}\right)=0$ and $\tilde{V} \cap\left\{y_{\sigma, i}=0\right\}$ is $\left\{\boldsymbol{y}_{\sigma} ; y_{\sigma, i}=0\right.$ and $\left.g_{d_{i}}\left(\boldsymbol{y}_{\sigma}\right)=0\right\}$. Note that $g_{A_{i}}\left(\boldsymbol{y}_{\sigma}\right)$ is a function of $y_{\sigma, i+1}, \cdots, y_{\sigma, n}$. Thus $\tilde{V} \cap\left\{y_{\sigma, i}=0\right\}$ is non-empty if and only if $\operatorname{dim} \Delta_{i}>0$. Let $E\left(P_{i} ; \sigma\right)$ $=\left\{\boldsymbol{y}_{\sigma} \in \tilde{V} ; y_{\sigma, i}=0\right\} . \pi\left(E\left(P_{i} ; \sigma\right)\right)=\{0\}$ if and only if P_{i} is strictly positive. The union of $E\left(P_{i} ; \sigma\right)$ for simplexes σ which contain P_{i} is a divisor of V and we denote it by $E\left(P_{i}\right)$. We say that vertices P_{1}, \cdots, P_{k} in Σ^{*} are adjacent if there is an ($n-1$)-simplex σ of Σ^{*} which contains P_{1}, \cdots, P_{k}.

Lemma (4.1). Let P_{1}, \cdots, P_{k} be vertices of Σ^{*} with $\operatorname{dim} \Delta\left(P_{i}\right) \geqq 1$. $\bigcap_{i} E\left(P_{i}\right)$ is non-empty if and only if P_{1}, \cdots, P_{k} are adjacent.

Lemma (4.2). Assume that P is a strictly positive vertex of Σ^{*} such that $\operatorname{dim} \Delta(P)=1$. Then $E(P)$ has $r(P)+1$ connected components. If $n=3$, they are rational curves. Here $r(P)$ is the number of the integral points in $\Delta(P)-\partial \Delta(P)$.

Let $g\left(u_{1}, \cdots, u_{k}\right)$ be a polynomial with support $S(g)$. We say that g is globally non-degenerate ($=0$-non-degenerate in [7]) if $g_{d}(u)$ has no critical point in $\left(C^{*}\right)^{k} \cap g_{\Delta}^{-1}(0)$ for each Δ.

The exceptional divisor $E(P)$ has a canonical stratification in which each stratum is described by $g^{-1}(0)$ for some globally nondegenerate polynomial g.

Lemma (4.3) ([2], [5], [7]). Let $g\left(u_{1}, \cdots, u_{k}\right)$ be a globally nondegenerate polynomial and let $V^{*}=g^{-1}(0) \cap\left(C^{*}\right)^{k}$. Then the Euler characteristic of V^{*} is $(-1)^{k+1} k!k$-dim. volume $S(g)$.
§5. Main result. We assume that $n=3$ and let $\pi: \tilde{V} \rightarrow V$ be the good resolution associated with Σ^{*}. Let Δ be a two dimensional face of $\Gamma(f)$. We define $g(\Delta)$ by the number of the integral points in $\Delta-\partial \Delta$. Our main result is

Theorem (5.1). Let $\pi: \tilde{V} \rightarrow V$ be as above. Then for a strictpositive vertex of Σ^{*}, we have
(i) If $\operatorname{dim} \Delta(P)=2, E(P)$ has genus $g(\Delta(P))$.
(ii) If $\operatorname{dim} \Delta(P)=1, E(P)$ is a disjoint union of $r(P)+1$ rational curves.
(iii) Assume that Σ^{*} is canonical. Then the resolution graph is obtained by a canonical surgery of $\Gamma^{*}(f)$ as follows: Let $\overline{P Q}$ be a line segment of $\Gamma^{*}(f)$ and assume that P is strictly positive. Let $c=\operatorname{det}(P, Q)$ and assume that $c>1$. Let c_{1} be as Lemma (3.1). Let

$$
m_{1}=\frac{1}{m_{2}-\cdot}
$$

be the continuous fraction of c / c_{1}. We insert $r(P, Q)+1$ copies of chains of rational curves $\underbrace{-m_{1}}-{ }^{-m_{2}} \cdot{ }^{-m_{k}}$ between P and Q. Here $r(P, Q)=r(P+Q)$. In the case of $c=1$, the chain is $\quad-\quad$ - by definition. If neither P nor Q is strictly positive, we do nothing. Those vertices which are not strictly positive are omitted from the resolution diagram after the surgery. Assume that $\operatorname{dim} \Delta(P)=2$. Let Q_{1}, \cdots, Q_{s} be the vertices of Σ^{*} which are adjacent to P. Let $P={ }^{t}\left(p_{1}, p_{2}, p_{3}\right)$ and $Q_{i}={ }^{t}\left(q_{1, i}, q_{2, i}, q_{3, i}\right)(i=1, \cdots, s)$. (s is the number of one-dimensional boundaries of $\Delta(P)$.) Then the self-intersection number of $E(P)$ is $\left.-\sum_{i}^{s}\left(r\left(P, Q_{i}\right)+1\right) q_{1, i}\right) / p_{1}$.

The proof is done by considering the divisor of the holomorphic function $\pi^{*} z_{1}$ on \tilde{V} and by the property $\left(\pi^{*} z_{1}\right) \cdot E(P)=0$. Lemmas (3.2) and (4.3) and the following lemma play the key role in the proof.

Lemma (5.1). Let Δ be a compact polyhedron in \boldsymbol{R}^{2} with integral points as vertices. Let $\Delta_{1}, \cdots, \Delta_{s}$ be one dimensional faces of Δ. Then we have 2 volume $\Delta=2 g(\Delta)+\sum_{i}^{s}\left(r\left(\Delta_{i}\right)+1\right)-2$.

Further details will be treated in [6].

References

[1] Kempf, G., Knudsen, F., Mumford, D., and Saint-Donat, B.: Toroidal Embeddings. Lect. Notes in Math., vol. 339, Springer (1973).
[2] Kouchnirenko, A. G.: Polyèdres de Newton et Nombres de Milnor. Invent. math., 32, 1-32 (1976).
[3] Laufer, H. B.: Normal two-dimensional singularities. Ann. of Math. Studies, no. 71, Princeton Univ. Press (1971).
[4] Mumford, D.: The topology of normal singularities of an algebraic surface and a criterion for simplicity. Publ. Math., 9, l'Inst. des hautes études sci. Paris (1961).
[5] Oka, M.: On the topology of the Newton boundary II. J. Math. Soc. Japan, 32, 65-92 (1980).
[6] Oka, M.: On the resolution of hypersurface singularities (to appear).
[7] Varchenko, A. N.: Zeta-function of the Monodromy and Newton's diagram. Invent. math., 37, 253-262 (1976).

