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Let G be a connected reductive Lie group and g its Lie algebra.
We call G acceptable if there exists a connected complex Lie group

Gc with Lie algebra gc=g(R)C which has the following two properties.
(1) The canonical injection from g into gc can be lifted up to a homo-
morphism of G into Gc. (2) For a Cartan subalgebra c of gc, let p
be half the sum of positive roots of (gc, c). Then ,(exp X)=exp (p(X))
(X e c) defines a unique character of Hc into C*.

Assume G is acceptable. Fix an infinitesimal character 2, and
let V(2) be the virtual character module of G which has the infinitesi-
mal character . If 2 is regular, V(2) is equal to the module of all
the invariant eigendistributions (IEDs) on G with eigenvalue . We
always assume that 2 is regular in the following.

Let H be a Cartan subgroup of G and its Lie algebra. We
denote the Weyl group of (gc, i)c) by W=W(c). In this paper, we
define a natural representation of a subgroup Wn()of W on a sub-
space Vn() of V(). And we clarify this Wn()-module structure of
Vn(). Let Car (G) be the set of conjugacy classes of Cartan subgroups
of G, and [H] eCar(G) the conjugacy class of H. Then we have
V(2)=c( V() (see Theorem 1) and if is integral for Go,
Wn(2) is equal to W (Theorem 4). So, for integral , we can consider
W-module structure of V(). Representations of W on V() are con-
sidered in [1], [3] and so on. Our present definition of the representa-
tion of Wn() coincides essentially with their definitions in the case
that is integral (Theorem 2). These representations of "integral Weyl
groups" Wn(2)’s may be useful to classify the irreducible admissible
representations of G.

1. Definition of representations of Weyl groups. At first we
quote the results of T. Hirai [2]. Let H be a Cartan subgroup of G
with Lie algebra . Let S(c) be the space of all the polynomial func-
tions on c=)(R)C and I(c) the space of all the elements in S(c)
which are invariant under the action of the Weyl group W(c). Put
Wo(H)=No(H)/Z(H), where N(H) denotes the normalizer of H in G
and Zo(H) the centralizer. We denote by 3(H; ) the set of analytic

functions on H satisfying the conditions (1) and (2).
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(1) is an eigenfunctin of HI)c) with eigenvalue 2, where we
identify elements of I(c) with differential operators of constant coef-
ficients on H.

(2) is e-symmetric under W(H), i.e.,
(wh)=(w, h)(h) (h e H, w e W(H)),

where (w, h) is defined as follows. An element w e W(H) naturally
induces an element of W(c). Let N() be the number of imagi-
nary roots a0 for which -a0, and S() the set of real root
a0 for which -c0. Then we put for h e H and w e W(H),

(w, h)= (-- 1)( sgn (_ (h)).
aSR()

Here is the character of H defined by the equation Ad(h)X.
=(h)X (h e H), where X is a non-zero root veztor 2or a.

We can define natural order on Car (G) such that a maximal splt
Cartan subgroup is the smallest element with respect to this order
([2], p. 274). We say an IED t has a height [H] if tl0 and
for any H’ such that [H’][H]. We call t extremal if t has the uni-.
que height.

Theorem 1 ([2], p. 284, p. 307). (1) For any element of (H;
), we can construct an extremal IED T in V(2) which has the height
[H] and on H it naturally provides (see [2], p. 272).

(2) Conversely, any element of V(2) can be written as a linear
combination of IEDs which are of the form T ( e (H; 2)) for some
H’8.

For the infinitesimal character e )c* and H, let W(2) be the set.
of w e W(c) for which exp (w2, X) (X e )) defines an analytic function
on H0, the identity component of H. Let L be the kernel o the map
exp’-*H0. Then w e W(c) belongs to W() if and only if (w, L}
2J-1 Z, where (,} is the. pairing of c*c. Put

L= w-L, W()-----{w e W(c)]wL=L}.

Let W(H)={Iw e W(H)}, where {HlO<=i<=l} is a set of representa-
tives of conjugacy classes of connected components of H under W(H).
Then we get the ollowing proposition.

Proposition 1. The set Wn() is invariant under the left multi-
plication of W(H) and the right multiplication of Wn(2). Moreover,
the group W() is the largest subgroup of W(c) which leaves W(}
invariant under the right multiplication.

Proposition 2 ([2], p, 319). The space !(H;2) has a basis con-
sisting of the elements of the form" for Oi_l and {t} Wn() a com-
plete system of representatives for W(H)\ ITVn(2),
,t(wa exp X)=(w, a) e(s, a) exp (t, sX) (w e W(H), X e ),

8W(Hi)

and , is zero outside the W(H)-orbit of H, where a is a minimal



No. 6] Weyl Groups on Character Module 195

element in H (see [2], p. 314).
Definition. For u e Wn(2) and ,t above, put

(Ru,t)(wa exp X)--dw, at) , (s, at) exp (tu-12, sX).
sW(H)

Then we define a representation r of Wn(2) on Vn(a)= T(2(H a)) by

In the case that G satisfies Zuckerman’s conditions ([3], p. 498)
and 2 is integral, we get the following theorem.

Theorem 2. Let G be a connected semisimple Lie group with

finite centre. Suppose that G is acceptable and Gc simply connected.
Then, if 2 is integral, Wn(2)_W for any Cartan subgroup H of G and
we get the representation r of W on V(2)=necr (a) V(2). Moreover,
r is equivalent to the representation which Zuckerman defined ([3],
p. 499) and there exists an intertwining operator between these two
representations which is diagonal.

This theorem shows that Hirai’s method T, which gives the map
from necr ()2(H ) onto V(]), commutes essentially with actions
of Weyl group, the natural one in the former and Zuckerman’s one in
the latter.

By Theorem 2, we can relate r to the functor (.)(R)F, where F is a
finite dimensional representation of G, if G and satisfy the assump-
tions of Theorem 2.

2. The W(2).module structure of V(2). We can prove the
following main theorem.

Theorem 3. Le I W(2) be a complete system of representa-
tives of a coset space W(H,)\ Wn(2)/Wn(2). Then as a Wn(2)-module,

Vn(2)- ,e Indw() erW
i=O F

where Wr=Wz(2)f"-1W(H,) and g is a character of W defined by
g(w)=(rwr-, a) (a e H, w e W).

We say 2 is integral for Gc if 2 is the differential of a character of

He. If 2 is integral for Go, then Wn(2)=Wn(2)W and this permits
us to consider W-module structure of V(2): [H]Care V(2). Using
Theorem 3, we get the following theorem.

Theorem 4. If 2 is integral for Go, W-module V(2) is decomposed
as follows.

V(2) Ind v(),
[HeCar (G) i=O

where {H]Oil} is a set of representatives of conjugacy classes of
connected components of H under Wa(H), and is a character of
W(H) with values in {+_ 1} defined by e(w)=(w, a) (w e W(H), a e H).

This theorem is a generalization of Proposition 2.4 in [1].
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