53. Representations of Weyl Group and Its Subgroups on the Virtual Character Modules

By Kyo Nishiyama

Department of Mathematics, Kyoto University

(Communicated by Kôsaku YOSIDA, M. J. A., June 12, 1984)

Let G be a connected reductive Lie group and g its Lie algebra. We call G acceptable if there exists a connected complex Lie group G_c with Lie algebra $\mathfrak{g}_c = \mathfrak{g} \otimes_{\mathbb{R}} C$ which has the following two properties. (1) The canonical injection from g into \mathfrak{g}_c can be lifted up to a homomorphism of G into G_c . (2) For a Cartan subalgebra \mathfrak{h}_c of \mathfrak{g}_c , let ρ be half the sum of positive roots of $(\mathfrak{g}_c, \mathfrak{h}_c)$. Then $\xi_{\rho}(\exp X) = \exp(\rho(X))$ $(X \in \mathfrak{h}_c)$ defines a unique character of H_c into C^* .

Assume G is acceptable. Fix an infinitesimal character λ , and let $V(\lambda)$ be the virtual character module of G which has the infinitesimal character λ . If λ is regular, $V(\lambda)$ is equal to the module of all the invariant eigendistributions (IEDs) on G with eigenvalue λ . We always assume that λ is regular in the following.

Let *H* be a Cartan subgroup of *G* and \mathfrak{h} its Lie algebra. We denote the Weyl group of $(\mathfrak{g}_c, \mathfrak{h}_c)$ by $W = W(\mathfrak{h}_c)$. In this paper, we define a natural representation of a subgroup $W_H(\lambda)$ of *W* on a subspace $V_H(\lambda)$ of $V(\lambda)$. And we clarify this $W_H(\lambda)$ -module structure of $V_H(\lambda)$. Let Car (*G*) be the set of conjugacy classes of Cartan subgroups of *G*, and $[H] \in \text{Car}(G)$ the conjugacy class of *H*. Then we have $V(\lambda) = \sum_{[H] \in \text{Car}(G)}^{\oplus} V_H(\lambda)$ (see Theorem 1) and if λ is integral for G_c , $W_H(\lambda)$ is equal to *W* (Theorem 4). So, for integral λ , we can consider *W*-module structure of $V(\lambda)$. Representations of *W* on $V(\lambda)$ are considered in [1], [3] and so on. Our present definition of the representation of $W_H(\lambda)$ coincides essentially with their definitions in the case that λ is integral (Theorem 2). These representations of "integral Weyl groups" $W_H(\lambda)$'s may be useful to classify the irreducible admissible representations of *G*.

§1. Definition of representations of Weyl groups. At first we quote the results of T. Hirai [2]. Let H be a Cartan subgroup of G with Lie algebra \mathfrak{h} . Let $S(\mathfrak{h}_c)$ be the space of all the polynomial functions on $\mathfrak{h}_c = \mathfrak{h} \otimes_R C$ and $I(\mathfrak{h}_c)$ the space of all the elements in $S(\mathfrak{h}_c)$ which are invariant under the action of the Weyl group $W(\mathfrak{h}_c)$. Put $W_o(H) = N_o(H)/Z_o(H)$, where $N_o(H)$ denotes the normalizer of H in G and $Z_o(H)$ the centralizer. We denote by $\mathfrak{B}(H; \lambda)$ the set of analytic functions ζ on H satisfying the conditions (1) and (2).

(1) ζ is an eigenfunction of $I(\mathfrak{h}_c)$ with eigenvalue λ , where we identify elements of $I(\mathfrak{h}_c)$ with differential operators of constant coefficients on H.

(2) ζ is ε -symmetric under $W_{g}(H)$, i.e.,

 $\zeta(wh) = \epsilon(w, h)\zeta(h) \qquad (h \in H, w \in W_{G}(H)),$

where $\varepsilon(w, h)$ is defined as follows. An element $w \in W_{a}(H)$ naturally induces an element \tilde{w} of $W(\mathfrak{h}_{c})$. Let $N_{I}(\tilde{w})$ be the number of imaginary roots $\alpha > 0$ for which $\tilde{w}^{-1}\alpha < 0$, and $S_{R}(\tilde{w})$ the set of real roots $\alpha > 0$ for which $\tilde{w}^{-1}\alpha < 0$. Then we put for $h \in H$ and $w \in W_{a}(H)$, $\varepsilon(w, h) = (-1)^{N_{I}(\tilde{w})} \prod \operatorname{sgn}(\xi_{\tilde{w}-1_{a}}(h)).$

$$(w, h) = (-1)^{N_I(w)} \prod_{\alpha \in S_R(\tilde{w})} \operatorname{sgn} (\xi_{\tilde{w}^{-1}\alpha}(h)).$$

Here ξ_{α} is the character of H defined by the equation $\operatorname{Ad}(h)X_{\alpha} = \xi_{\alpha}(h)X_{\alpha}$ $(h \in H)$, where X_{α} is a non-zero root vector for α .

We can define natural order on Car (G) such that a maximal split Cartan subgroup is the smallest element with respect to this order ([2], p. 274). We say an IED θ has a height [H] if $\theta|_{H} \not\equiv 0$ and $\theta|_{H'} \equiv 0$ for any H' such that [H'] > [H]. We call θ extremal if θ has the unique height.

Theorem 1 ([2], p. 284, p. 307). (1) For any element ζ of $\mathfrak{B}(H; \lambda)$, we can construct an extremal IED $T\zeta$ in $V(\lambda)$ which has the height [H] and on H it naturally provides ζ (see [2], p. 272).

(2) Conversely, any element of $V(\lambda)$ can be written as a linear combination of IEDs which are of the form $T\zeta$ ($\zeta \in \mathfrak{B}(H; \lambda)$) for some H's.

For the infinitesimal character $\lambda \in \mathfrak{h}_c^*$ and H, let $\tilde{W}_H(\lambda)$ be the set of $w \in W(\mathfrak{h}_c)$ for which exp $(w\lambda, X)$ $(X \in \mathfrak{h})$ defines an analytic function on H_0 , the identity component of H. Let L be the kernel of the map exp: $\mathfrak{h} \to H_0$. Then $w \in W(\mathfrak{h}_c)$ belongs to $\tilde{W}_H(\lambda)$ if and only if $\langle w\lambda, L \rangle$ $\subset 2\pi\sqrt{-1} Z$, where \langle , \rangle is the pairing of $\mathfrak{h}_c^* \times \mathfrak{h}_c$. Put

 $\sub{2\pi\sqrt{-1} Z}$, where \langle , \rangle is the pairing of $\mathfrak{h}_{c}^{*} \times \mathfrak{h}_{c}$. Put $L_{\lambda} = \sum_{w \in \widehat{W}_{H}(\lambda)} w^{-1}L, \qquad W_{H}(\lambda) = \{ w \in W(\mathfrak{h}_{c}) \mid wL_{\lambda} = L_{\lambda} \}.$

Let $W(H_i) = \{\tilde{w} | w \in W_c(H_i)\}$, where $\{H_i | 0 \leq i \leq l\}$ is a set of representatives of conjugacy classes of connected components of H under $W_c(H)$. Then we get the following proposition.

Proposition 1. The set $\tilde{W}_{H}(\lambda)$ is invariant under the left multiplication of $W(H_{i})$ and the right multiplication of $W_{H}(\lambda)$. Moreover, the group $W_{H}(\lambda)$ is the largest subgroup of $W(\mathfrak{h}_{c})$ which leaves $\tilde{W}_{H}(\lambda)$ invariant under the right multiplication.

Proposition 2 ([2], p, 319). The space $\mathfrak{B}(H; \lambda)$ has a basis consisting of the elements of the form: for $0 \leq i \leq l$ and $\{t\} \subset \tilde{W}_{H}(\lambda)$ a complete system of representatives for $W(H_{i}) \setminus \tilde{W}_{H}(\lambda)$,

$$\begin{split} \zeta_{i,\iota}(wa_i \exp X) = & \varepsilon(w, a_i) \sum_{s \in W(H_i)} \varepsilon(s, a_i) \exp(t\lambda, sX) \quad (w \in W_g(H), X \in \mathfrak{h}), \\ and \zeta_{i,\iota} \text{ is zero outside the } W_g(H) \text{-orbit of } H_i, \text{ where } a_i \text{ is a minimal} \end{split}$$

element in H_i (see [2], p. 314).

Definition. For $u \in W_H(\lambda)$ and $\zeta_{i,t}$ above, put

 $(R_u \zeta_{i,i})(wa_i \exp X) = \varepsilon(w, a_i) \sum_{s \in W(H_i)} \varepsilon(s, a_i) \exp(tu^{-1}\lambda, sX).$

Then we define a representation τ of $W_H(\lambda)$ on $V_H(\lambda) = T(\mathfrak{B}(H; \lambda))$ by

 $\tau_u(T\zeta_{i,t}) = T(R_u\zeta_{i,t}).$

In the case that G satisfies Zuckerman's conditions ([3], p. 498) and λ is integral, we get the following theorem.

Theorem 2. Let G be a connected semisimple Lie group with finite centre. Suppose that G is acceptable and G_c simply connected. Then, if λ is integral, $W_H(\lambda) \cong W$ for any Cartan subgroup H of G and we get the representation τ of W on $V(\lambda) = \sum_{[H] \in Car(G)}^{\oplus} V_H(\lambda)$. Moreover, τ is equivalent to the representation which Zuckerman defined ([3], p. 499) and there exists an intertwining operator between these two representations which is diagonal.

This theorem shows that Hirai's method T, which gives the map from $\sum_{[H]\in Car(G)}^{\oplus} \mathfrak{B}(H; \lambda)$ onto $V(\lambda)$, commutes essentially with actions of Weyl group, the natural one in the former and Zuckerman's one in the latter.

By Theorem 2, we can relate τ to the functor $(\cdot)\otimes F$, where F is a finite dimensional representation of G, if G and λ satisfy the assumptions of Theorem 2.

§2. The $W_H(\lambda)$ -module structure of $V_H(\lambda)$. We can prove the following main theorem.

Theorem 3. Let $\Gamma \subset \tilde{W}_H(\lambda)$ be a complete system of representatives of a coset space $W(H_i) \setminus \tilde{W}_H(\lambda) / W_H(\lambda)$. Then as a $W_H(\lambda)$ -module,

$$V_H(\lambda) \cong \sum_{i=0}^{l} \bigoplus_{r \in \Gamma} \sum_{r \in \Gamma} \operatorname{Ind}_{W_T}^{W_H(\lambda)} \varepsilon^r,$$

where $W^{\tau} = W_{H}(\lambda) \cap \gamma^{-1} W(H_{i})\gamma$ and ε^{τ} is a character of W^{τ} defined by $\varepsilon^{\tau}(w) = \varepsilon(\gamma w \gamma^{-1}, a_{i}) \ (a_{i} \in H_{i}, w \in W^{\tau}).$

We say λ is integral for G_c if λ is the differential of a character of H_c . If λ is integral for G_c , then $\tilde{W}_H(\lambda) = W_H(\lambda) \cong W$ and this permits us to consider W-module structure of $V(\lambda) = \sum_{[H] \in Car(G)}^{\oplus} V_H(\lambda)$. Using Theorem 3, we get the following theorem.

Theorem 4. If λ is integral for G_c , W-module $V(\lambda)$ is decomposed as follows.

$$V(\lambda) \cong \sum_{[H] \in \operatorname{Car}(G)} \sum_{i=0}^{l} \operatorname{Ind}_{W(H_i)}^{W} \varepsilon_i,$$

where $\{H_i | 0 \leq i \leq l\}$ is a set of representatives of conjugacy classes of connected components of H under $W_d(H)$, and ε_i is a character of $W(H_i)$ with values in $\{\pm 1\}$ defined by $\varepsilon_i(w) = \varepsilon(w, a_i)$ ($w \in W(H_i)$, $a_i \in H_i$).

This theorem is a generalization of Proposition 2.4 in [1].

K. NISHIYAMA

The author expresses his hearty thanks to Prof. T. Hirai for many useful discussions and kind encouragements.

References

- D. Barbasch and D. Vogan: Weyl group representations and nilpotent orbits. Birkhäuser (in Representation theory of reductive groups edited by C. Trombi) (1983).
- [2] T. Hirai: Invariant eigendistributions of Laplace operators on real simple Lie groups, III. Methods of construction for semisimple Lie groups. Japan. J. Math., 2, 269-341 (1976).
- [3] A. W. Knapp and G. J. Zuckerman: Classification of irreducible tempered representations of semisimple groups. Ann. Math., 116, 389-501 (1982).