51. Factorization of Entire Solutions of Some Difference Equations

By Niro YANAGIHARA Department of Mathematics, Chiba University (Communicated by Kôsaku Yosida, M. J. A., June 12, 1984)

1. Introduction. A meromorphic function h(x) is said to be *factored* if there are a meromorphic function f(x) and an entire function g(x) such that h(x) = f(g(x)). h(x) is said to be *pseudo-prime* if every such factorization $h = f \circ g$ implies that either f is rational or g is a polynomial [4]. In this paper, we will consider factorization of solutions of the equation

(1.1) y(x+1)=P(y(x)),where P(w) is a polynomial of degree $p \ge 2$: (1.2) $P(w)=a_pw^p+\cdots+a_1w+a_0, a_p\neq 0, p\ge 2.$ Any meromorphic solution y(x) of (1.1) is transcendental and entire, unless it is a constant [6], [7]. If there is a number λ such that (1.3) $\lambda = P(\lambda)$ and $P'(\lambda)=1, P(w)=\lambda+(w-\lambda)+A_m(w-\lambda)^{m+1}+\cdots,$ then the difference equation (1.1) possesses an entire solution $\phi_{\lambda}(x)$ which is expanded asymptotically

(1.3')
$$\phi_{\lambda}(x) \sim \lambda + x^{-1/m} \sum_{j+k \ge 0} c_{jk} x^{-j/m} \left(\frac{\log x}{x} \right)$$

as x tends to ∞ through $D(R, \varepsilon)$:

(1.3'')

 $D(R, \varepsilon) = \{ |x| > R, |\arg x - \pi| < (\pi/2) - \varepsilon \} \\ \cup \{ \operatorname{Im} [xe^{-i\varepsilon}] > R \} \cup \{ \operatorname{Im} [xe^{i\varepsilon}] < -R \}$

where $\varepsilon > 0$ is arbitrarily fixed, and R(>0) depends on ε and c_{m0} , in which m is the integer in (1.3) $(A_m \neq 0)$ [5], [7].

If there is a number λ such that

(1.4) $\lambda = P(\lambda)$ and $|P'(\lambda)| > 1$, then (1.1) possesses an entire solution $s_i(x)$ which is expanded as (1.4') $s_{\lambda}(x) = \lambda + \sum_{j=1}^{\infty} p_j b^{jx} = \psi_{\lambda}(b^x)$ (we write $P'(\lambda)$ as b) where (1.4'') $\psi_{\lambda}(t) = \lambda + \sum_{j=1}^{\infty} p_j t^j$ is an entire solution of the Schröder equation (1.1')w(bt) = P(w(t)).Further we have shown that any entire solution y(x) of (1.1) satisfies (1.5) $y(x-\mu) \rightarrow \lambda$ as $\mu \uparrow \infty$, uniformly on any compact set, where λ is a number for which either (1.3) or (1.4) holds [7], [8]. If y(x) satisfies (1.5) for a λ with (1.3),

then y(x) can be written as

(1.6) $y(x) = \phi_{\lambda}(x + \kappa(x)),$ where $\kappa(x)$ is an entire function with period 1, i.e., if we write $g(x) = x + \kappa(x)$, then y(x) is factored as $y = \phi_{\lambda} \circ g$ and g satisfies (1.6') g(x+1) = g(x) + 1.If solution y(x) satisfies (1.5) for a λ with (1.4), then

(1.7) $y(x) = \psi_{\lambda}(\kappa(x)b^{x}),$ where $\kappa(x)$ is also an entire function with period 1, i.e., if we write

 $g(x) = \kappa(x)b^x$, then we have $y = \psi_{\lambda} \circ g$ and g satisfies

(1.7')
$$g(x+1)=bg(x)$$
.

Thus, any solution of (1.1) can be factored with either ϕ_{λ} or ψ_{λ} and a function g(x) which satisfies a difference equation (1.6') or (1.7'). Thus it would be natural to ask whether $\phi_{\lambda}(x)$ would be factored as $\phi_{\lambda} = f \circ g$ in which g(x) satisfies some difference equation

(1.8)
$$g(x+1) = G(g(x))$$

where G(w) is an entire function. Similarly, we ask whether ψ_{λ} would be factored as $\psi_{\lambda} = f \circ h$ in which h(t) satisfies some Schröder equation

(1.8') h(bt) = G(h(t)), with an entire G(w). In this direction, we prove here

Theorem 1. $\phi_{\lambda}(x)$ can not be factored with transcendental f and g, where g(x) satisfies (1.8). Similarly $\psi_{\lambda}(t)$ can not be factored with transcendental f and h, where h(t) satisfies (1.8').

Theorem 2. Let y(x) be an entire solution of (1.1). Suppose y(x) is factored as $y = f \circ g$ with transcendental f and g, where g satisfies some difference equation of the form (1.8), then we have

(1.9) $g(x) = ax + \kappa(x) \qquad (a \neq 0) \quad or$

(1.9') $g(x) = \kappa(x)c^x + d \quad (c \neq 0)$

where $\kappa(x)$ is an entire function with period 1, and a, c, d are constants.

For the proof, we need the following lemma, which we proved in [9]. Professor W. K. Hayman kindly informed me that the lemma had been obtained by Dr. R. Goldstein [3]. His method is different from that in [9].

Lemma 1. Let P(w) and Q(w) be polynomials of degree p and q, respectively, with $q \ge 2$. Suppose there is a meromorphic function f(x) with

(1.10) f(Q(x)) = P(f(x)).

Then we must have that p = q, and f(x) can not be transcendental.

2. Proof of Theorem 2. Let y(x) be a solution of (1.1) and let y(x)=f(g(x)) with transcendental f and g, with g(x+1)=G(g(x)), where G(w) is an entire function. Suppose G(w) be transcendental. Then, by a Theorem of Clunie [1, p. 77, Theorem 2 (ii)], we obtain

No. 6]

(2.1)
$$\limsup [T(r, f \circ G)/T(r, f)] = \infty.$$

On the other hand, we get

$$T(r, f \circ G) = T(r, P \circ f) = pT(r, f) + 0$$
 (1)

by [2, p. 47, Theorem 6.1], which contradicts with (2.1). Thus G(w) can not be transcendental and must be a polynomial.

By Lemma 1, G(w) can not be of degree ≥ 2 , since f(x) is transcendental by assumption. Therefore

$$G(w) = cw + a.$$

Suppose c=1. If a=0, then g(x) and hence y(x)=f(g(x)) would be periodic, which is a contradiction. Hence, if c=1, then $a\neq 0$. Thus we have that g(x+1)=g(x)+a, and hence $g(x)=ax+\kappa(x)$, with an entire periodic function $\kappa(x)$ and a constant $a\neq 0$.

Suppose $c \neq 1$. Then g(x+1) = cg(x) + a, hence $g(x) = \kappa(x)c^x + d$ with d = a/(1-c). Thus we obtain the assertion of the Theorem.

3. Proof of Theorem 1. We note that $\phi_{\lambda}(x)$ is univalent in a half-plane

$$H = \{x ; \text{Re } x < -R_1\}$$

for sufficiently large R_1 [7]. Suppose $\phi_{\lambda}(x) = f(g(x))$ with transcendental f and g, where g satisfies an equation of the form (1.8). By Theorem 2, g(x) must be written as either in (1.9) or in (1.9'). In either case, f(g(x)) can not be univalent in H unless $\kappa(x) \equiv \text{const.}$ In fact, if $\kappa(x) \not\equiv \text{const.}$, then there are x_1 and x_2 such that $x_1 \neq x_2$ and $ax_1 + \kappa(x_1) = ax_2 + \kappa(x_2)$. Take a natural number k so large that $x'_j = x_j$ $-k \in H$, j=1,2. Then we would have $f(g(x'_1)) = f(g(x'_2))$, $x'_1 \neq x'_2$, and f(g(x)) is not univalent in H. The possibility that $g(x) = a_1c^x + d$ ($a_1 = a$ const.) is also excluded by the univalency of f(g(x)) in H.

 $\psi_{\lambda}(t)$ is univalent in $|t| < \rho_1$ for a small ρ_1 . Suppose $\psi_{\lambda}(t) = f(h(t))$ with transcendental f and h, where h(t) satisfies an equation of the form (1.8'), with $b = P'(\lambda)$. Put $g(x) = h(b^x)$. Then g(x) satisfies a difference equation (1.8). By Theorem 2, we have

either (i) $g(x)=h(b^x)=ax+\kappa(x)$ or (ii) $g(x)=h(b^x)=\kappa(x)c^x+d$. Suppose (i). Then

$$h(t) = \frac{a}{\log b} \log t + \kappa \left(\frac{\log t}{\log b}\right).$$

Since h(t) must be entire, the case (i) can not occur.

Suppose (ii). Then

$$h(t) = \kappa \left(\frac{\log t}{\log b} \right) t^{\alpha} + d, \qquad \alpha = \frac{\log c}{\log b}.$$

Since h(t) must be holomorphic and univalent in $|t| < \rho_1$, we have that $\alpha = 1$, c = b. Further, $\kappa(x)$ must be a constant by the univalency of $\psi_1(t)$. Thus we obtain the result.

4. Remark. So far we have been concerned with factorization $f \circ g$ assuming that g(x) satisfies an equation (1.8). One may conjecture that, if a solution y(x) of (1.1) would be factored as $y=f \circ g$, then g would satisfy an equation of the form (1.8). This is not true if f is admitted to be rational. For example, consider the equation

(4.1) y(x+1)=4y(x)(1-y(x)).

A solution $y(x) = \sin^2(2^x)$ is factored as $f \circ g$ with $f(z) = z^2$ and $g(x) = \sin(2^x)$, and g(x) satisfies

$$g(x+1) = G(g(x))$$

with $G(w)=2w(1-w^2)^{1/2}$, which is not one-valued. If we require for f to be transcendental, then we do not know whether the conjecture would be true or not.

References

- J. Clunie: The composition of entire and meromorphic functions. Mathematical Essays dedicated to A. J. Macintyre. Ohio University Press, pp. 75-92 (1970).
- [2] A. A. Goldberg and I. B. Ostrowskii: Value Distributions of Meromorphic Functions. Moskow (1970) (in Russian).
- [3] R. Goldstein: On certain composition of functions of a complex variable. Aequationes Mathematicae, 4, 103-126 (1970).
- [4] F. Gross and C.-C. Yang: The fix-points and factorization of meromorphic functions. Trans. Amer. Math. Soc., 168, 211-219 (1972).
- [5] T. Kimura: On the iteration of analytic functions. Funkcial. Ekvac., 14, 197-238 (1971).
- [6] S. Shimomura: Entire solutions of a polynomial difference equation. Jour. Fac. Sci., Univ. Tokyo, Sec. IA Math., 28, 253-266 (1981).
- [7] N. Yanagihara: Meromorphic solutions of some difference equations. Funkcial. Ekvac., 55, 309-326 (1980).
- [8] ——: Meromorphic solutions of some difference equations and conformal mapping of infinite strips. ibid., 26, 17-35 (1983).
- [9] ——: Meromorphic solutions of some functional equations. Bull. Sc. Math., 107, 289-300 (1983).