51. Factorization of Entire Solutions of Some Difference Equations

By Niro Yanagihara
Department of Mathematics, Chiba University
(Communicated by Kôsaku Yosida, M. J. A., June 12, 1984)

1. Introduction. A meromorphic function $h(x)$ is said to be factored if there are a meromorphic function $f(x)$ and an entire function $g(x)$ such that $h(x)=f(g(x)) . \quad h(x)$ is said to be pseudo-prime if every such factorization $h=f \circ g$ implies that either f is rational or g is a polynomial [4]. In this paper, we will consider factorization of solutions of the equation
(1.1)

$$
y(x+1)=P(y(x))
$$

where $P(w)$ is a polynomial of degree $p \geqq 2$:
(1.2)

$$
P(w)=a_{p} w^{p}+\cdots+a_{1} w+a_{0}, \quad a_{p} \neq 0, \quad p \geqq 2 .
$$

Any meromorphic solution $y(x)$ of (1.1) is transcendental and entire, unless it is a constant [6], [7]. If there is a number λ such that
(1.3) $\quad \lambda=P(\lambda)$ and $P^{\prime}(\lambda)=1, \quad P(w)=\lambda+(w-\lambda)+A_{m}(w-\lambda)^{m+1}+\cdots$, then the difference equation (1.1) possesses an entire solution $\phi_{\lambda}(x)$ which is expanded asymptotically

$$
\phi_{\lambda}(x) \sim \lambda+x^{-1 / m} \sum_{j+k \geqq 0} c_{j k} x^{-j / m}\left(\frac{\log x}{x}\right)^{k}
$$

as x tends to ∞ through $D(R, \varepsilon)$:

$$
\begin{align*}
D(R, \varepsilon)= & \{|x|>R,|\arg x-\pi|<(\pi / 2)-\varepsilon\} \\
& \cup\left\{\operatorname{Im}\left[x e^{-i \varepsilon}\right]>R\right\} \cup\left\{\operatorname{Im}\left[x e^{\varepsilon \varepsilon}\right]<-R\right\}
\end{align*}
$$

where $\varepsilon>0$ is arbitrarily fixed, and $R(>0)$ depends on ε and $c_{m 0}$, in which m is the integer in (1.3) $\left(A_{m} \neq 0\right)$ [5], [7].

If there is a number λ such that

$$
\begin{equation*}
\lambda=P(\lambda) \quad \text { and } \quad\left|P^{\prime}(\lambda)\right|>1 \tag{1.4}
\end{equation*}
$$ then (1.1) possesses an entire solution $s_{\lambda}(x)$ which is expanded as

(1.4') $\quad s_{\lambda}(x)=\lambda+\sum_{j=1}^{\infty} p_{j} b^{j x}=\psi_{\lambda}\left(b^{x}\right) \quad$ (we write $P^{\prime}(\lambda)$ as b)
where

$$
\left(1.4^{\prime \prime}\right)
$$

$$
\psi_{\lambda}(t)=\lambda+\sum_{j=1}^{\infty} p_{j} t^{j}
$$

is an entire solution of the Schröder equation

$$
\left(1.1^{\prime}\right) \quad w(b t)=P(w(t))
$$

Further we have shown that any entire solution $y(x)$ of (1.1) satisfies

$$
\begin{equation*}
y(x-\mu) \rightarrow \lambda \quad \text { as } \mu \uparrow \infty \tag{1.5}
\end{equation*}
$$

uniformly on any compact set, where λ is a number for which either (1.3) or (1.4) holds [7], [8]. If $y(x)$ satisfies (1.5) for a λ with (1.3), then $y(x)$ can be written as

$$
\begin{equation*}
y(x)=\phi_{\lambda}(x+\kappa(x)), \tag{1.6}
\end{equation*}
$$

where $\kappa(x)$ is an entire function with period 1, i.e., if we write $g(x)$ $=x+\kappa(x)$, then $y(x)$ is factored as $y=\phi_{i} \circ g$ and g satisfies

$$
\begin{equation*}
g(x+1)=g(x)+1 \tag{1.6'}
\end{equation*}
$$

If solution $y(x)$ satisfies (1.5) for a λ with (1.4), then

$$
\begin{equation*}
y(x)=\psi_{\lambda}\left(\kappa(x) b^{x}\right), \tag{1.7}
\end{equation*}
$$

where $\kappa(x)$ is also an entire function with period 1, i.e., if we write $g(x)=\kappa(x) b^{x}$, then we have $y=\psi_{2} \circ g$ and g satisfies
$g(x+1)=b g(x)$.
Thus, any solution of (1.1) can be factored with either ϕ_{λ} or ψ_{λ} and a function $g(x)$ which satisfies a difference equation (1.6') or (1.7'). Thus it would be natural to ask whether $\phi_{\lambda}(x)$ would be factored as $\phi_{k}=f \circ g$ in which $g(x)$ satisfies some difference equation

$$
\begin{equation*}
g(x+1)=G(g(x)), \tag{1.8}
\end{equation*}
$$

where $G(w)$ is an entire function. Similarly, we ask whether ψ_{λ} would be factored as $\psi_{2}=f \circ h$ in which $h(t)$ satisfies some Schröder equation
$\left(1.8^{\prime}\right) \quad h(b t)=G(h(t))$, with an entire $G(w)$.
In this direction, we prove here
Theorem 1. $\phi_{\lambda}(x)$ can not be factored with transcendental f and g, where $g(x)$ satisfies (1.8). Similarly $\psi_{\lambda}(t)$ can not be factored with transcendental f and h, where $h(t)$ satisfies (1.8').

Theorem 2. Let $y(x)$ be an entire solution of (1.1). Suppose $y(x)$ is factored as $y=f \circ g$ with transcendental f and g, where g satisfies some difference equation of the form (1.8), then we have

$$
\begin{array}{lll}
g(x)=a x+\kappa(x) & (a \neq 0) \quad \text { or } \tag{1.9}\\
g(x)=\kappa(x) c^{x}+d & (c \neq 0) &
\end{array}
$$

where $\kappa(x)$ is an entire function with period 1 , and a, c, d are constants.

For the proof, we need the following lemma, which we proved in [9]. Professor W. K. Hayman kindly informed me that the lemma had been obtained by Dr. R. Goldstein [3]. His method is different from that in [9].

Lemma 1. Let $P(w)$ and $Q(w)$ be polynomials of degree p and q, respectively, with $q \geqq 2$. Suppose there is a meromorphic function $f(x)$ with
(1.10)

$$
f(Q(x))=P(f(x))
$$

Then we must have that $p=q$, and $f(x)$ can not be transcendental.
2. Proof of Theorem 2. Let $y(x)$ be a solution of (1.1) and let $y(x)=f(g(x))$ with transcendental f and g, with $g(x+1)=G(g(x))$, where $G(w)$ is an entire function. Suppose $G(w)$ be transcendental. Then, by a Theorem of Clunie [1, p. 77, Theorem 2 (ii)], we obtain

$$
\begin{equation*}
\limsup _{r \rightarrow \infty}[T(r, f \circ G) / T(r, f)]=\infty \tag{2.1}
\end{equation*}
$$

On the other hand, we get

$$
T(r, f \circ G)=T(r, P \circ f)=p T\left(r, f^{\prime}\right)+0(1)
$$

by [2, p. 47, Theorem 6.1], which contradicts with (2.1). Thus $G(w)$ can not be transcendental and must be a polynomial.

By Lemma $1, G(w)$ can not be of degree $\geqq 2$, since $f(x)$ is transcendental by assumption. Therefore

$$
G(w)=c w+a
$$

Suppose $c=1$. If $a=0$, then $g(x)$ and hence $y(x)=f(g(x))$ would be periodic, which is a contradiction. Hence, if $c=1$, then $a \neq 0$. Thus we have that $g(x+1)=g(x)+a$, and hence $g(x)=a x+\kappa(x)$, with an entire periodic function $\kappa(x)$ and a constant $a \neq 0$.

Suppose $c \neq 1$. Then $g(x+1)=c g(x)+a$, hence $g(x)=\kappa(x) c^{x}+d$ with $d=a /(1-c)$. Thus we obtain the assertion of the Theorem.
3. Proof of Theorem 1. We note that $\phi_{\lambda}(x)$ is univalent in a half-plane

$$
H=\left\{x ; \operatorname{Re} x<-R_{1}\right\}
$$

for sufficiently large R_{1} [7]. Suppose $\phi_{\lambda}(x)=f(g(x))$ with transcendental f and g, where g satisfies an equation of the form (1.8). By Theorem 2, $g(x)$ must be written as either in (1.9) or in (1.9'). In either case, $f(g(x))$ can not be univalent in H unless $\kappa(x) \equiv$ const. In fact, if $\kappa(x) \not \equiv$ const., then there are x_{1} and x_{2} such that $x_{1} \neq x_{2}$ and $a x_{1}+\kappa\left(x_{1}\right)=a x_{2}+\kappa\left(x_{2}\right)$. Take a natural number k so large that $x_{j}^{\prime}=x_{j}$ $-k \in H, j=1,2$. Then we would have $f\left(g\left(x_{1}^{\prime}\right)\right)=f\left(g\left(x_{2}^{\prime}\right)\right), x_{1}^{\prime} \neq x_{2}^{\prime}$, and $f(g(x))$ is not univalent in H. The possibility that $g(x)=a_{1} c^{x}+d\left(a_{1}=a\right.$ const.) is also excluded by the univalency of $f(g(x))$ in H.
$\psi_{\lambda}(t)$ is univalent in $|t|<\rho_{1}$ for a small ρ_{1}. Suppose $\psi_{\lambda}(t)=f(h(t))$ with transcendental f and h, where $h(t)$ satisfies an equation of the form (1.8'), with $b=P^{\prime}(\lambda)$. Put $g(x)=h\left(b^{x}\right)$. Then $g(x)$ satisfies a difference equation (1.8). By Theorem 2, we have
either (i)
or (ii)

$$
\begin{aligned}
& g(x)=h\left(b^{x}\right)=a x+\kappa(x) \\
& g(x)=h\left(b^{x}\right)=\kappa(x) c^{x}+d .
\end{aligned}
$$

Suppose (i). Then

$$
h(t)=\frac{a}{\log b} \log t+\kappa\left(\frac{\log t}{\log b}\right)
$$

Since $h(t)$ must be entire, the case (i) can not occur.
Suppose (ii). Then

$$
h(t)=\kappa\left(\frac{\log t}{\log b}\right) t^{\alpha}+d, \quad \alpha=\frac{\log c}{\log b} .
$$

Since $h(t)$ must be holomorphic and univalent in $|t|<\rho_{1}$, we have that $\alpha=1, c=b$. Further, $\kappa(x)$ must be a constant by the univalency of $\psi_{\lambda}(t)$. Thus we obtain the result.
4. Remark. So far we have been concerned with factorization $f \circ g$ assuming that $g(x)$ satisfies an equation (1.8). One may conjecture that, if a solution $y(x)$ of (1.1) would be factored as $y=f \circ g$, then g would satisfy an equation of the form (1.8). This is not true if f is admitted to be rational. For example, consider the equation

$$
\begin{equation*}
y(x+1)=4 y(x)(1-y(x)) \tag{4.1}
\end{equation*}
$$

A solution $y(x)=\sin ^{2}\left(2^{x}\right)$ is factored as $f \circ g$ with $f(z)=z^{2}$ and $g(x)$ $=\sin \left(2^{x}\right)$, and $g(x)$ satisfies

$$
g(x+1)=G(g(x))
$$

with $G(w)=2 w\left(1-w^{2}\right)^{1 / 2}$, which is not one-valued. If we require for f to be transcendental, then we do not know whether the conjecture would be true or not.

References

[1] J. Clunie: The composition of entire and meromorphic functions. Mathematical Essays dedicated to A. J. Macintyre. Ohio University Press, pp. 75-92 (1970).
[2] A. A. Goldberg and I. B. Ostrowskii: Value Distributions of Meromorphic Functions. Moskow (1970) (in Russian).
[3] R. Goldstein: On certain composition of functions of a complex variable. Aequationes Mathematicae, 4, 103-126 (1970).
[4] F. Gross and C.-C. Yang: The fix-points and factorization of meromorphic functions. Trans. Amer. Math. Soc., 168, 211-219 (1972).
[5] T. Kimura: On the iteration of analytic functions. Funkcial. Ekvac., 14, 197-238 (1971).
[6] S. Shimomura: Entire solutions of a polynomial difference equation. Jour. Fac. Sci., Univ. Tokyo, Sec. IA Math., 28, 253-266 (1981).
[7] N. Yanagihara: Meromorphic solutions of some difference equations. Funkcial. Ekvac., 55, 309-326 (1980).
[8] --: Meromorphic solutions of some difference equations and conformal mapping of infinite strips. ibid., 26, 17-35 (1983).
[9] -: Meromorphic solutions of some functional equations. Bull. Sc. Math., 107, 289-300 (1983).

