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1. Introduction. Let N be the set of all natural numbers and
a a mapping from N to the set {+_1} satisfying the condition a(ab)
--a(a)a(b) or all a, b e N. We call such a mapping a a totally multi-
plicative signature. We have a(a2) --1, particularly a(1)--l. The
constant signature a(a)=l for all a e N is called trivial. In the fol-
lowing, we are concerned with non-trivial totally multiplicative signa-
tures, called simply signatures and denoted by a. Let II(a) be the set
o.f all primes p, for which a(p)=--l, a is obviously determined by
II(a). When II(a) coincides with the set o all primes, then a is
Liouville’s unction . S. Chowla conjectured that, given any finite
sequence el, "",e, =_+1, then 2(x/m)--e(lmg) will have
infinitely many solutions (cf. [1], [5]). In [4], I. Schur and G. Schur
proved that the followings are the only signatures for which a(x)=
a(x + 1)- a(x +2)= 1 does not occur.

I. I a(3)--l, then a(3n /1) --1, a(3n/ 2) --1, a(3t)--a(t)or all
n, k, t with (t, 3)=1.

II. If a(3)=--1, then a(3n+1)=1, a(3n+2)=--1, a(3kt)
=(--1)a(t) for all n, k, t with (t, 3)= 1.

Furthermore they proved that a(x)= 1, a(x / 1)-- 1, a(x/ 2)= 1
has always a solution for any a.

In this paper we prove the following theorem.
Theorem. Let a be a totally multiplicative signature for which

II(a) contains at least two primes. Then
( ) a(x)----1, a(x+l)=--1 has infinitely many solutions,
(ii) a(x)-- --1, a(x + 1) 1, a(x +2)= 1 has a solution and if

a(2)=1, it has infinitely many solutions.
Our result contains a special case of Chowla’s conjecture.
Henceforth we simply write either (n)/ or (n)_ instead of a(n)-1

or a(n)= 1, respectively.
2. Proof of Theorem. Let p, q be the smallest and the next

smallest elements of II(a). Then we have lpq, (p, q)=l.
Proof of (i). The congruence qx--1 (mod p) has a unique solu-

tion x0 in the interval l<x<p--1. So there exists r eN such that
qxo=pr/l. Similarly the congruence qy----1 (mod p) has a unique
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solution Y0 in the interval 1yp--1 and we have s e N such that qYo

=ps--1.

We now consider two pairs of two consecutive natural numbers
qXo--1--pr, qXo; qYo, qyo+l=ps. As l xo, yop--1, it is easy to see
that l<rq, lsq. Therefore, rom the definition o p and q, if
p.)(r, we have (r)/ and if pXs, we obtain (s)/. So according as either
pXr or pXs, we have either (qx0--1)_, (qXo)_ or (qYo)-, (qY0/l) respec-
tively. Therefore we have only to show that at least one of the two
numbers r, s is not divisible by p.

Suppose both plr and pls. By the equalities qxo-- pr/l, qYo

=ps--1, we have q(xo/Yo)=p(r/s). By our assumption, we have

P (r+s) and so PI q(xo+Yo). But, as (p, q)=l, we have PI (x0+Y0).
This contradicts the fact that 2 < Xo/ Yo 2P--2p. This assures an
existence oi a natural number m with (m)_, (m+ 1)_.

From the above proof we see that at least one of the linear equa-
tions px--qy=___l has a solution x--u, y=v such that (pu)_, (qv)_,
luq--1, l<vp--1, and pXu.

We consider the diophantine equation (pu)x--(qv)y= +_1, where
the sign corresponds to the. linear equation which has the solution
X--U, y--).

The above quadratic equation has integral coefficients and an inte-

gral solution x=y--1. Its discriminant d is equal to 4pquv. So d is
positive and is not a square number since q2Xd. Therefore this equa-
tion has infinitely many integral solutions (cf. [3], p. 150, Th. 8-10),
and we ha.ve (pux)_, (qvy2)_.

Proof of (ii). Case p=2. First we consider the case (3)/. Then

(1)/, (2)_, (3)+. Therefore i (7)+, we obtain (6)_, (7)+, (8)_. So sup-
pose (7)_. If (5)/, we have (8)_, (9)+, (10)_. So suppose moreover
(5)_. I (13)_, then (13)_, (14)/, (15)_. Therefore suppose again (13)+.
Then we obtain (24)_, (25)/, (26)_. This assures that any signed

sequence (1)+, (2)_, (3)/, of natural numbers contains a triple -,

/, o consecutive signs.

Similarly we can also prove that there exists a natural number n
such that (n)_, (n + 1)+, (n/2)_ in the case (3)_.

These prove (ii) of Theorem in the case p=2.
Case p2. Then (2)+. From now on we assume that there are

no three consecutive natural numbers n, n/l, n/2 such that (n)_,
(n/l)/, (n/2)_.

By the part (i) o Theorem, there exist infinitely many natural
numbers m which satisfy (m)_, (re+l)_. So for each m, as (2)/, we
have (2m)_, (2(m/1))_. Therefore by the above assumption, we have
(2m)_, (2m/1)_, (2(m/1)). Repeating this process 2k times, we can
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find 2 + 1 consecutive natural numbers 2m, 2m+ 1, ., 2(m+ 1)
such that their a-values are --1. So we will obtain a contradiction if
we can find a square number among these 2+1 numbers for a suf-
ficiently large k.

Consider the interval [2/, 2/+1]. If k is sufficiently large,
we obtain 2/m+1-2/ 1. So there exists a natural number h
such that 2/n--h2/+1. So we have 2mh2(m+l).
This is a contradiction. Therefore for each m with (m)_, (re+l)_,
we can find a natural number g with (g)_, (g+l)/, (g/2)_, which
proves (ii).

Remark. It seems difficult to find necessary and sufficient condi-
tions which assure the existence of a natural number m with (m)_,
(m+ 1)_, (m +2)_.
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