78. The Lp.boundedness of Pseudo-differential Operators Satisfying Estimates of Parabolic Type and Product Type

By Masao Yamazaki
Department of Mathematics, University of Tokyo
(Communicated by Kôsaku Yosida, m. J. A., Oct. 12, 1984)

In this paper we consider symbols $P(x, \xi)$ satisfying certain estimates such as $\left|\partial_{\xi_{l}}^{k} P(x, \xi)\right| \leqq C\left(1+\xi_{l}^{2}\right)^{-k / 2}$ for every $l=1,2, \cdots, n$ and $k=0,1, \cdots, n+1$, and we give a sufficient condition under which the associated pseudo-differential operators $P\left(x, D_{x}\right)$ are bounded on L^{p} $=L^{p}\left(\boldsymbol{R}^{n}\right)$, where $1<p<\infty$.

We shall also show that our condition is sharp, by constructing an operator which is not L^{p}-bounded for any $1<p<\infty$.

To obtain the result we establish a version of the Littlewood-Paley decomposition theorem of the space $L^{p}\left(\boldsymbol{R}^{n}\right)$ of parabolic type and product type.

1. Statement of the theorem. Let $n_{1}, n_{2}, \cdots, n_{N}$ be a family of positive integers. We put $n=n_{1}+n_{2}+\cdots+n_{N}$ and

$$
\Lambda_{\nu}=\left\{l \in N ; n_{1}+\cdots+n_{\nu-1}+1 \leqq l \leqq n_{1}+\cdots+n_{\nu-1}+n_{\nu}\right\}
$$

for $\nu=1,2, \cdots, N$.
We regard \boldsymbol{R}^{n} as $\boldsymbol{R}^{n_{1}} \times \boldsymbol{R}^{n_{2}} \times \cdots \times \boldsymbol{R}^{n_{N}}$, and denote $x \in \boldsymbol{R}^{n}$ as $x=\left(x^{(1)}, \cdots, x^{(N)}\right)$, where $x^{(\nu)}=\left(x_{l}\right)_{l \in \Lambda_{\nu}} \in \boldsymbol{R}^{n_{\nu}}$. We also give a weight $M=\left(M^{(1)}, \cdots, M^{(N)}\right)$ to \boldsymbol{R}^{n}, where each $M^{(\nu)}=\left(m_{l}\right)_{l \in A_{\nu}}$ satisfies $\min _{l \in \Lambda_{\nu}} m_{l}=1$.

For $y=\left(y_{l}\right)_{l \in \Lambda_{\nu}} \in \boldsymbol{R}^{n_{\nu}}$ we define the action of $t \in \boldsymbol{R}^{+}=\{t ; t \geqq 0\}$ to y by $t^{M^{(\nu)}} y=\left(t^{m_{l}} y_{l}\right)_{l \in A_{\nu}}$, and we denote by [y] the only positive number t satisfying $t^{-M^{(\nu)}} y=\left(t^{-1}\right)^{M^{(\nu)}} y \in\left\{y \in \boldsymbol{R}^{n_{\nu}} ;|y|=1\right\}$. (For $y=0$ we set [0], $=0$.) For $x \in \boldsymbol{R}^{n}$ we put $t^{M} x=\left(t^{M^{(1)}} x^{(1)}, \cdots, t^{M^{(N)}} x^{(N)}\right)$. If $f(x)$ is a function on \boldsymbol{R}^{n}, then for $\nu=1,2, \cdots, N$ and $y \in \boldsymbol{R}^{n_{\nu}}$ we write

$$
\Delta_{y}^{(\nu)} f(x)=f\left(x^{(1)}, \cdots, x^{(\nu)}-y, \cdots, x^{(N)}\right)-f(x) .
$$

Now we introduce a notion to state our main theorem.
Definition. We call a set of functions $\left\{\omega_{1}\left(t_{1}\right), \omega_{2}\left(t_{1}, t_{2}\right), \cdots, \omega_{N}\left(t_{1}, t_{2}\right.\right.$, $\left.\cdots, t_{N}\right)$ \} modulus of continuity if it satisfies the following three conditions:

1) Each $\omega_{\nu}\left(t_{1}, t_{2}, \cdots, t_{\nu}\right)$ is a function on ($\left.\boldsymbol{R}^{+}\right)^{\nu}$ into \boldsymbol{R}^{+}.
2) $\omega_{\nu}\left(t_{1}, t_{2}, \cdots, t_{\nu}\right)$ is monotone-increasing and concave for each t_{k}, where $1 \leqq k \leqq \nu$.
3) $\omega_{\nu+\mu}\left(t_{1}, t_{2}, \cdots, t_{\nu+\mu}\right) \leqq \min \left\{2^{\mu} \omega_{\nu}\left(t_{1}, \cdots, t_{\nu}\right), 2^{\nu} \omega_{\mu}\left(t_{\nu+1}, \cdots, t_{\nu+\mu}\right)\right\}$.

Theorem. The following three conditions concerning moduli of
continuity are equivalent :

1) $\int_{0}^{1} \cdots \int_{0}^{1} \frac{\omega_{\nu}\left(t_{1}, t_{2}, \cdots, t_{\nu}\right)^{2}}{t_{1} t_{2} \cdots t_{\nu}} d t_{1} d t_{2} \cdots d t_{\nu}<\infty$ for every $\nu=1,2, \cdots, N$.
2) Suppose that a symbol $P(x, \xi)$ satisfies the following estimates (${ }^{*} \mu$) for all $\mu=0,1, \cdots, N$:
(*0) For every $\nu=1,2, \cdots, N, l \in \Lambda_{\nu}$ and $k=0,1, \cdots, n+1$ we have $\left|\partial_{\xi_{l}^{k}}^{k} P(x, \xi)\right| \leqq C\left(1+\left[\xi^{(\nu)}\right]_{\nu}\right)^{-m_{l} k}$.
(* μ) For every $\nu=1,2, \cdots, N, 1 \leqq \nu(1)<\nu(2)<\cdots<\nu(\mu) \leqq N$, $y_{1} \in \boldsymbol{R}^{n_{\nu(1)}}, \cdots, y_{\mu} \in \boldsymbol{R}^{n_{\nu(\mu)}}, l \in \Lambda_{\nu}$ and $k=0,1, \cdots, n+1$ we have

$$
\begin{aligned}
& \left|d_{y_{1}(1)}^{(1)}\left(\cdots\left(\Lambda_{y_{l}}^{\left(v_{e}(\mu)\right)}\left\{\partial_{\varepsilon, l}^{k} P(x, \xi)\right\}\right) \cdots\right)\right| \\
& \leqq C \omega_{\mu}\left[\left[y_{1}\right]_{\nu_{(1)}}, \cdots,\left[y_{\mu}\right]_{\nu_{\mu}(\mu)}\right)\left(1+\left[\xi^{(\omega)}\right]_{q}\right)^{-m_{l} k} .
\end{aligned}
$$

Then the associated pseudo-differential operator $P\left(x, D_{x}\right)$ is bounded on $L^{p}\left(\boldsymbol{R}^{n}\right)$ for all $1<p<\infty$.
3) For every symbol $P(x, \xi)$ satisfying the estimates (${ }^{*} \mu$) for all $\mu=0,1, \cdots, N$ there exists $1<p<\infty$ such that $P\left(x, D_{x}\right)$ is bounded on $L^{p}\left(\boldsymbol{R}^{n}\right)$.
2. Outline of the proof of 2$) \rightarrow 3) \rightarrow 1$) and remarks. The assertion 2) $\rightarrow 3$) is trivial. If a modulus of continuity $\left\{\omega_{1}\left(t_{1}\right), \cdots, \omega_{N}\left(t_{1}, t_{2}\right.\right.$, $\left.\left.\cdots, t_{N}\right)\right\}$ does not satisfy the condition 1), then we can construct a symbol $P(x, \xi)$ such that the estimate (${ }^{*} \mu$) holds for every $\mu=0,1, \cdots, N$ and that the associated operator $P\left(x, D_{x}\right)$ is not bounded on $L^{p}\left(\boldsymbol{R}^{n}\right)$ for any $1<p<\infty$. This implies the assertion 3) $\rightarrow 1$).

Remark 1. It was shown in Coifman-Meyer [1] that the condition $\int_{0}^{1} t^{-1} \omega_{1}(t)^{2} d t<\infty$ is necessary for the L^{p}-boundedness of the operators associated with symbols satisfying (*0) and (*1). In case $N \geqq 2$, the hypothesis 1) is satisfied if
($* * *$)

$$
\int_{0}^{1} t^{-1}(-\log t)^{N-1} \omega_{1}(t)^{2} d t<\infty
$$

since we have

$$
\begin{aligned}
& \int_{0}^{1} \cdots \int_{0}^{1} \omega_{\nu}\left(t_{1}, \cdots, t_{\nu}\right)^{2} d t_{1} \cdots d t_{\nu} \\
& t_{1} \cdots t_{\nu} \leqq \int_{0}^{1} \cdots \int_{0}^{1}\left\{2^{\nu-1} \min _{l} \omega_{1}\left(t_{l}\right)\right\}^{2} d t_{1} \cdots d t_{\nu} \\
& t_{1} \cdots t_{\nu} \\
&=\nu 4^{\nu-1} \int_{0}^{1}(-\log t)^{\nu-1} \omega_{1}(t)^{2} d t .
\end{aligned}
$$

On the other hand, if $\omega_{1}(t)$ is a continuous, monotone-increasing, concave function which does not satisfy ($* * *$), then we can construct a modulus of continuity which does not satisfy the condition 1) by putting $\omega_{\nu}\left(t_{1}, \cdots, t_{\nu}\right)=2^{\nu-1} \omega_{1}\left(\min \left\{t_{1}, \cdots, t_{\nu}\right\}\right)$.

Remark 2. The L^{p}-boundedness of pseudo-differential operators with symbols satisfying similar estimates as $\left({ }^{*} \mu\right)$ was shown in [1] in
the case $N=1$ and $M=(1, \cdots, 1)$. They assumed the estimates of the derivative $\partial_{\xi}^{\alpha} P$ for each $\alpha \in N^{n}$. Muramatu-Nagase [3] showed that the estimates of $\partial_{\xi}^{\alpha} P$ for α satisfying $|\alpha| \leqq n+2$ are sufficient. The case $N=1$ and $M \neq(1, \cdots, 1)$ was treated by Yamazaki [6].

For other L^{p}-boundedness theorems of this type, see MossahebOkada [2] and Nagase [4].
3. Outline of the proof of 1$) \rightarrow 2$). Let $\psi_{0}(t)$ be a C°-function on \boldsymbol{R}^{+}satisfying $0 \leqq \psi_{0}(t) \leqq 1, \psi_{0}(t)=1(t \leqq 1)$ and $\psi_{0}(t)=0(t \geqq 4 / 3)$. For $j=1,2, \cdots$ we put $\psi_{j}(t)=\psi_{0}\left(2^{-j} t\right)-\psi_{0}\left(2^{1-j} t\right)$. Then we have the following.

Lemma 1. Suppose that $a \in \boldsymbol{R}^{n}, 1 \leqq \nu \leqq N, K=\left(k_{1}, \cdots, k_{\nu}\right) \in N^{\nu}$ and $u(x) \in L^{p}\left(\boldsymbol{R}^{n}\right)$, where $1<p<\infty$. If we put

$$
u_{a, K}(x)=\mathscr{F}^{-1}\left[\exp \left(i \sum_{j=1}^{\nu} a^{(j)} \cdot 2^{-k_{j} M^{(j)}} \xi^{(j)}\right) \psi_{k_{1}}\left(\left[\xi^{(1)}\right]_{1}\right) \cdots \psi_{k_{\nu}}\left(\left[\xi^{(\nu)}\right]_{\nu}\right) \hat{u}(\xi)\right](x) .
$$

Then we have the estimate

$$
\left\|\left(\sum_{K \in N^{\nu}}\left|u_{a, K}(x)\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \leqq B\left(\prod_{j=1}^{\nu} \log \left(2+\left[a^{(j)}\right]_{j}\right)\right)\|u\|_{L^{p}}
$$

for some constant B independent of a.
This lemma can be shown by virtue of a non-isotropic version of the Calderón-Zygmund decomposition theorem (see Stein [5], Chap. I) and the use of the Rademacher functions (see [5], Chap. IV). Lemma 1 and the standard duality argument yield the following.

Lemma 2. Suppose that $1<p<\infty, 1 \leqq \nu \leqq N$ and $B>1$. For $K \in N^{\nu}$ we denote by I_{K} the set of $\xi \in \boldsymbol{R}^{n}$ satisfying $\left[\xi^{(i)}\right]_{,}<B$ for all j such that $1 \leqq j \leqq \nu$ and $k_{j}=0$ and $2^{k_{j}} B^{-1}<\left[\xi^{(j)}\right]_{j}<2^{k_{j}} B$ for all j such that $1 \leqq j \leqq \nu$ and $k_{j} \geqq 1$. If a family of functions $\left\{u_{K}(x)\right\}_{K \in N^{\nu}}$ satisfies the condition $\operatorname{supp} u_{K}(\xi) \subset I_{K}$ and the estimate

$$
\left\|\left(\sum_{K \in N^{\nu}}\left|u_{K}(x)\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\boldsymbol{R}^{n}\right)}<\infty,
$$

then the sum $u(x)=\sum_{K \in N^{\nu}} u_{K}(x)$ is well-defined in $L^{p}\left(\boldsymbol{R}^{n}\right)$, and we have the estimate $\|u(x)\|_{L^{p}} \leqq C\left\|\left(\sum_{K}\left|u_{K}(x)\right|^{2}\right)^{1 / 2}\right\|_{L^{p}}$.

The theorem can be proved in the same manner as in [1]. We decompose "reduced symbols" into 2^{N} parts, and estimate each part by virtue of Lemma 1 and Lemma 2. Details will be published elsewhere.

References

[1] R. R. Coifman et Y. Meyer: Au-delà des opérateurs pseudo-différentiels. Astérisque $\mathrm{n}^{\circ} 57$, Soc. Math. France, Paris (1978).
[2] S. Mossaheb et M. Okada: Une classe d'opérateurs pseudo-différentiels bornés sur $L^{r}\left(\boldsymbol{R}^{n}\right), 1<r<\infty$. C. R. Acad. Sci. Paris, Série A, 285, 613-616 (1977).
[3] T. Muramatu and M. Nagase: On sufficient conditions for the boundedness of pseudo-differential operators. Proc. Japan Acad., 55A, 293-296 (1979).
[4] M. Nagase: The L^{p}-boundedness of pseudo-differential operators with nonregular symbols. Comm. in P. D. E., 2, 1045-1061 (1977).
[5] E. M. Stein: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, New Jersey (1970).
[6] M. Yamazaki: Continuité des opérateurs pseudo-différentiels et paradifférentiels dans les espaces de Besov et les espaces de Triebel-Lizorkin non-isotropes. C. R. Acad. Sci. Paris, Série I, 296, 533-536 (1983).

