94. On Zero-divisors in Reduced Group Rings over Ordered Groups

By W. B. Vasantha
The Ramanujan Institute, University of Madras
(Communicated by Shokichi Iyanaga, m. J. a., Nov. 12, 1984)

In this note, a ring will mean (not necessarily commutative) ring with unity 1. A ring R is said to be reduced, if R has no nonzero nilpotent element. A group $G(\neq 1)$ is called ordered, if it admits strict linear ordering $<$ such that $g<h$ implies $g k<h k, k g<k h$ for all $k \in G$ (cf. Passman [1]). Our aim is to prove the following theorem.

Theorem. Let R be a reduced ring and G an ordered group. Let α, β be elements of the group ring $R G: \alpha=\sum_{i=1}^{n} a_{i} g_{i}, \beta=\sum_{j=1}^{m} b_{j} h_{j}$, where $a_{i}, b_{j} \in R\left(a_{i} \neq 0, b_{j} \neq 0\right)$, and g_{1}, \cdots, g_{n} and h_{1}, \cdots, h_{m} are respectively mutually distinct elements of G. Then we have $\alpha \beta=0$ if and only if $a_{i} b_{j}=0$ for all $i=1, \cdots, n, j=1, \cdots, m$.

For the proof we use the following simple lemma on a reduced ring R.

Lemma. If a, b are elements of a reduced ring $R, a b a=0$ implies $b a=0$. (In particular, $a b=0$ implies $b a=0$.)

Proof. If $a b a=0$, we have $(b a)^{2}=b a b a=0$. As R has no nonzero nilpotent element, this implies $b a=0$.

Proof of the Theorem. The if-part being obvious, we have only to prove the only-if-part: $\alpha \beta=0$ implies $a_{i} b_{j}=0$. We have nothing to prove, if $n=m=1$. So suppose $n \geq 2, m \geq 2$. As G is ordered and g_{1}, \cdots, g_{n} and h_{1}, \cdots, h_{m} are respectively mutually distinct, we may assume $g_{1}<\cdots<g_{n}, h_{1}<\cdots<h_{m}$. We have

$$
\begin{equation*}
\alpha \beta=\sum_{1 \leq i \leq n, 1 \leq j \leq m} a_{i} b_{j} g_{i} h_{j}=0 \tag{1}
\end{equation*}
$$

and $g_{1} h_{1}$ is the "smallest among $g_{i} h_{j}$ " i.e. we have $g_{1} h_{1}<g_{i} h_{j}$ for any i, j with $1<i, 1<j$. Thus we should have $a_{1} b_{1}=0$.

To simplify the further description of our proof, we shall use the following expressions on pairs of indices $(i, j),\left(i^{\prime}, j^{\prime}\right), \cdots$ where i, i^{\prime}, $\cdots \in\{1,2, \cdots, n\}, j, j^{\prime}, \cdots \in\{1,2, \cdots, m\}$. These $m n$ pairs are ordered according to the "magnitudes" of $g_{i} h_{j}, g_{i}, h_{j}$, \cdots; we shall say namely (i, j) is smaller than (i^{\prime}, j^{\prime}) and write $(i, j)<\left(i^{\prime}, j^{\prime}\right)$ when $g_{i} h_{j}<g_{i^{\prime}}, h_{j^{\prime}}$; (i, j) is called equivalent to (i^{\prime}, j^{\prime}), written $(i, j) \sim\left(i^{\prime}, j^{\prime}\right)$, when $g_{i} h_{j}=$ $g_{i^{\prime}, h_{j^{\prime}} .}^{\prime}$ From $i<i^{\prime}$ follows obviously ($\left.i, j\right)<\left(i^{\prime}, j\right.$), and from $(i, j)<\left(i^{\prime}, j^{\prime}\right)$, $\left(i^{\prime}, j^{\prime}\right) \sim\left(i^{\prime \prime}, j^{\prime \prime}\right)$ follows $(i, j)<\left(i^{\prime \prime}, j^{\prime \prime}\right)$. We shall prove $a_{i} b_{j}=0$ following the "magnitudes" of (i, j) beginning from the smallest pair $(1,1)$. A pair (i, j) will be called settled, if $a_{i} b_{j}=0$ has been proved. Thus (1,1)
is settled, and in proving $a_{i_{0}} b_{j_{0}}=0$ for a fixed pair $\left(i_{0}, j_{0}\right)$, we can obviously assume that all (i, j) are settled for $(i, j)<\left(i_{0}, j_{0}\right)$. Let $\left\{\left(i_{1}, j_{1}\right), \cdots,\left(i_{p}, j_{p}\right)\right\}$ be the set of all unsettled pairs which are equivalent to (i_{0}, j_{0}). From (1) follows
(2)

$$
a_{i_{1}} b_{j_{1}}+\cdots+a_{i_{p}} b_{j_{p}}=0
$$

We have nothing more to prove if $p=1$. So let $p \geq 2$ and $i_{1}<i_{2}<\ldots$ $<i_{p}$. Then we have for $k \geq 2\left(i_{1}, j_{k}\right)<\left(i_{k}, j_{k}\right) \sim\left(i_{0}, j_{0}\right)$ so that $\left(i_{1}, j_{k}\right)$ is settled by our assumption and $a_{i_{1}} b_{j_{k}}=0$ whence follows $b_{k_{j}} a_{i_{1}}=0$ by Lemma. Multiplying (2) by $a_{i_{1}}$ from right, we obtain $a_{i_{1}} b_{j_{1}}=0$, i.e. (i_{1}, j_{1}) is settled and we can proceed further.

In the following Corollaries, the notations $R, G, \alpha=\sum a_{i} g_{i}, \beta=$ $\sum b_{j} h_{j}$ will have the same meanings as in the Theorem.

Corollary 1. If α is a zero-divisor of $R G$, then a_{i} are zero-divisors of R.

Corollary 2. $a_{i}=b_{j}(\neq 0)$ can not take place for any $i=1, \cdots, n$, $j=1, \cdots, m$.

Proof. If $a_{i}=b_{j}$, then $a_{i} b_{j}=a_{i}^{2}=0$ and $a_{i}=0$.
Corollary 3. $R G$ has no non-trivial idempotent.
Proof. Let e be an idempotent of $R G$. Then $e^{2}=e, e(e-1)=0$, which implies $e=0$ or $e=1$ by virtue of Corollary 2.

Remark. If G is not torsion free, then $R G$ containselements α, β with $\alpha \beta=0$, such that coefficients of g_{i}, h_{j} in α, β are not zero-divisors; e.g. $\alpha=g-1, \beta=1+g+\cdots+g^{n-1}$ where $g^{n}=1$.

Acknowledgements. I wish to thank D. S. Passman for going through my results and giving his valuable comments. My thanks are due to U.G.C. for giving me financial support.

Reference

[1] Passman, D. S.: Infinite Group Rings. Pure and Applied Mathematics; a series of monographs and text books. vol. 6, M. Dekker (1971).

