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In this note, a ring will mean (not necessarily commutative) ring
with unity 1. A ring R is said to be reduced, if R has no nonzero
nilpotent element. A group G (=/=1) is called ordered, if it admits
strict linear ordering such that gh implies gkhk, kgkh for
all k e G (cf. Passman [1]). Our aim is to prove the following theorem.

Theorem. Let R be a reduced ring and G an ordered group.
Let , fl be elements of the group ring RG" =.=1 aig, fl= ,’=1 bh,
where ai, b e R (a=/=O, b=/=O), and gl, ", gn and hl, ..., h are respec-
tively mutually distinct elements of G. Then we have aft=0 if and
only if ab=O for all i=l, ..., n, ]=1, ..., m.

For the proof we use the following simple lemma on a reduced
ring R.

Lemma. If a, b are elements of a reduced ring R, aba=O implies
ba=O. (In particular, ab=O implies ba=0.)

Proof. If aba=O, we have (ba)2=baba=O. As R has no nonzero
nilpotent element, this implies ba--O.

Proof of the Theorem. The if-part being obvious, we have only
to prove the only-if-part" aft=0 implies ab=O. We have nothing to
prove, if n=m=l. So suppose n_2, m2. As G is ordered and
g," ", g and h,..., h are respectively mutually distinct, we may
assumegl...gn, hl...h. We have
1 ofl= El_tn,ljKm abgh=O

and gh is the "smallest among gh" i.e. we have ghgh for any

i, ] with 1i, 1]. Thus we should have ab=O.
To simplify the further description of our proof, we shall use the

following expressions on pairs of indices (i, ]), (i’, ]’), ..-where i, i’,

e{1,2,...,n},],]’,.., e {1, 2, ., m}. These mn pairs are ordered
according to the "magnitudes" of gh, g,h,, we shall say namely

(i, ]) is smaller than (i’, ]’) and write (i, ])(i’, ]’) when ghg,hj,
(i, ]) is called equivalent to (i’, ]’), written (i, ])-(i’, ]’), when gh=
g;h,. From ii’ follows obviously (i, ])(i’, ]), and rom (i, ])(i’, ]’),
(i’, ]’)-(i", ]") ollows (i, ]) (i", ]"). We shall prove ab=O following

the "magnitudes" o (i, ]) beginning from the smallest pair (1, 1). A
pair (i, ]) will be called settled, i ab=O has been proved. Thus (1, 1)
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is settled, and in proving a,obo--0 or a fixed pair (io, ]o), we can
obviously assume that all (i, ]) are settled for (i, ])(io, ]o). Let
{(i, ],), ..., (i, ])} be the set of all unsettled pairs which are equivalent
to (i0, ]0). From (1) follows
( 2 ab+... +ab-=-O.
We have nothing more to prove if p-1. So let p_2 and ii.
i. Then we have for k_2 (i, ],)(i, ],)-(io, ]o) so that (i,, ]) is
settled by our assumption and a,b--O whence follows ba,--O by
Lemma. Multiplying (2) by a, from right, we obtain a,,b--O, i.e.
(i, ]) is settled and we can proceed further.

In the ollowing Corollaries, the notations R, G, c--,a,g,,, bh will have the same meanings as in the Theorem.
Corollary 1. If is a zero-divisor of RG, then a., are zero-divisors

of R.
Corollary 2. a--bj (=0) can not take place for any i--1, ..., n,

Proof. If a--bj, then a,b--a--O and a,--0.
Corollary 3. RG has no non-trivial idempotent.

Proof. Let e be an idempotent of RG. Then e2--e, e(e--1)--0,
which implies e--0 or e-1 by virtue of Corollary 2.

Remark. If G is not torsion free, then RG contains’elements c,
with a--0, such that coefficients of g,, h in a, are not zero-divisors
e.g. a--g--l, --l+g+... +gn-1 where gn---1.
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