88. Parametrices and Propagation of Singularities near Gliding Points for Mixed Problems for Symmetric Hyperbolic Systems. II

By Kôji Kubota
Department of Mathematics, Hokkaido University

(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1984)
4. Sketch of proof of Theorem. We follow the procedure in Eskin [2], with some improvements, and modify the construction of the parametrix in [5] which treats the diffractive case where (2) holds with the opposite signature. (The details are given in [13].) We look for the parametrix $E(f)$ in the form :

$$
\begin{equation*}
G v=G_{0} v_{0}+G_{h} v_{h}+G_{e} v_{e} . \tag{6}
\end{equation*}
$$

Here $v={ }^{t}\left({ }^{t} v_{0},{ }^{t} v_{h},{ }^{t} v_{e}\right)$ is a d^{+}-vector whose components belong to $H^{-\infty}\left(R^{n}\right)$ and G_{n}, G_{e} are operators analogous to the $G^{(2)}, G^{(3)}$ in [5], respectively, while G_{0} is an $m \times m_{1}$ matrix, different essentially from the $G^{(1)}$, whose components are Fourier-Airy integral operators.

To construct G_{0} we use such phase functions $\theta\left(x, \eta^{\prime}\right)$ and $\rho\left(x, \eta^{\prime}\right)$ as in the diffractive case, where $\eta^{\prime}=\left(\eta_{0}, \eta^{\prime \prime}\right) \in R^{1} \times R^{n-1}$. Let $\bar{\eta}_{0}=0$ and $\bar{\eta}^{\prime \prime}=\bar{\xi}^{\prime \prime}$ with $\bar{\xi}^{\prime}=\left(\bar{\xi}_{0}, \bar{\xi}^{\prime \prime}\right)$. For definiteness suppose $\left(\partial \mu / \partial \xi_{0}\right)\left(\bar{x}, \bar{\xi}^{\prime}\right)>0$. Then θ and ρ are real valued functions, defined on a conic neighborhood of ($\bar{x}, \bar{\eta}^{\prime}$), such that $\phi^{ \pm}=\theta \pm(2 / 3) \rho^{3 / 2}$ solve the eikonal equation $Q_{0}\left(x, \phi_{x}^{ \pm}\right)=0$ for $\rho>0$, and that, for $x_{n}=0$, $\operatorname{det} \theta_{x^{\prime} n^{\prime}>0,} \theta_{x_{0 \eta_{0}}}>0$ and $\rho_{x_{n}}$ <0 (see [2]). Moreover $\rho\left(x^{\prime}, 0, \eta^{\prime}\right)=\alpha\left|\eta^{\prime}\right|^{2 / 3}$, which has been given in [12] and [14], where $\alpha=\eta_{0} /\left|\eta^{\prime}\right|$, and $Q_{0}\left(x, \phi_{x}^{ \pm}\right)=O\left(x_{n}^{\infty}\right)$ as $x_{n} \rightarrow+0$ for $\alpha<0$ and $\left|\eta^{\prime}\right|=1$. Notice that $\theta_{x_{n}}=\lambda\left(x, \theta_{x^{\prime}}\right)$ and $\mu\left(x, \theta_{x^{\prime}}\right)=\alpha\left(\rho_{x_{n}}\right)^{2}$ for $x_{n}=0$ and $\left|\eta^{\prime}\right|=1$. Let $A i(z)$ be the Airy function of the first kind and set $A_{ \pm}(z)=e^{\mp i \pi / 3} A i\left(e^{\mp i \pi / 3} z\right)$, which appear in the diffractive case. We then use, as in [2], the Airy function $A_{0}(z)=A_{+}(z)+A_{-}(z)$. It is known that $A i(z)$ solves $A i^{\prime \prime}(z)=z A i(z)$, is an entire function, real valued for real z, and has its zeros only on the negative real axis. Besides, $A i(0)>0, A i^{\prime}(0)<0$ and $A i(z)+\omega A i(\omega z)+\omega^{2} A i\left(\omega^{2} z\right)=0$, where $\omega=e^{i(2 / 3) \pi}$. Furthermore, for $|z| \gg 1$ and $-\pi<\arg z<\pi, A i(z)=z^{-1 / 4} e^{-(2 / 3) z z^{3 / 2}} \Psi(z)$ and $\Psi(z) \sim \sum_{k=0}^{\infty} a_{k} z^{-(3 / 2) k}$, where a_{k} are real and $a_{0}=(2 \sqrt{\pi})^{-1}$. Therefore we have $A_{0}(z)=A i(-z), A_{ \pm}(z)=z^{-1 / 4} e^{ \pm i(2 / 3) z 3 / 2} \Psi_{ \pm}(z)$ and $\Psi_{ \pm}(z) \sim e^{\mp i \pi / 4}$ $\cdot \sum_{k=0}^{\infty}(\pm i)^{k} \alpha_{k} z^{-(3 / 2) k}$ for $|z| \gg 1$ and $-\pi \pm \pi / 3<\arg z<\pi \pm \pi / 3$.

Now let ϕ_{1} be the canonical transformation defined by $y^{\prime}=$ $\theta_{\eta^{\prime}}\left(x^{\prime}, 0, \eta^{\prime}\right), \xi^{\prime}=\theta_{x^{\prime}}\left(x^{\prime}, 0, \eta^{\prime}\right)$ and $\phi_{1}\left(y^{\prime}, \eta^{\prime}\right)=\left(x^{\prime}, \xi^{\prime}\right)$. Then, under the inverse ϕ_{1}^{-1} of ϕ_{1}, the gliding ray $\Gamma\left(\bar{x}^{\prime}, \bar{\xi}^{\prime}\right)$ is exactly (and locally) mapped
onto the straight line, through $\left(\bar{y}^{\prime}, \bar{\eta}^{\prime}\right)=\phi_{1}^{-1}\left(\bar{x}^{\prime}, \bar{\xi}^{\prime}\right)$, which is parallel to the y_{0} axis and on which y_{0} increases as x_{0} does. Hereafter we write $y^{\prime}=\left(y_{0}, y^{\prime \prime}\right) \in R^{1} \times R^{n-1}$. Bearing this in mind, we seek G_{0} in the form (7)

$$
G_{0} v_{0}=G_{1} q_{1} v_{0}+G_{2} q_{2} v_{0} .
$$

Here $q_{1}\left(y_{0}\right), q_{2}\left(y_{0}\right)$ are cutoff functions such that $q_{1}+q_{2}=1$ and $R_{0}\left(x^{\prime}, \xi^{\prime}\right)$ $\neq 0$ on $N_{0} \cap \phi_{1}\left(\operatorname{supp} q_{2}\right)$. In fact, when (3) is satisfied, we take $q_{1}=0$, while if this is violated then $G_{2} q_{2} v_{0}$ is an additional term, needed only to assure that $v_{0}\left(y^{\prime}\right) \in H^{\infty}\left(R^{n} \cap\left\{y_{0} \ll \bar{y}_{0}\right\}\right)$. Moreover, for $j=1,2, G_{j}$ are of the form:

$$
\begin{align*}
\left(G_{j} w\right)(x)=\int e^{i \check{b}}\left(A_{0}(\check{\rho}) \check{a}_{s}-i A_{0}^{\prime}(\check{\rho}) \check{b}_{j}\right)(& \left(A_{+}(\zeta)^{-1} \chi_{1}\right. \tag{8}\\
& \left.+A_{0}(\zeta)^{-1}\left(1-\chi_{1}\right)\right) \hat{w}\left(\eta^{\prime}\right) d \eta^{\prime}
\end{align*}
$$

Here

$$
\hat{w}\left(\eta^{\prime}\right)=\int e^{-i y^{\prime} \eta^{\prime}} w\left(y^{\prime}\right) d y^{\prime}, \quad \zeta=\left(\eta_{0}-i \tau\right)\left|\eta^{\prime}\right|^{-1 / 3},
$$

τ being a positive number which is taken large enough, $\check{\rho}\left(x, \eta^{\prime}\right)$ is an almost analytic continuation of $\rho\left(x, \eta^{\prime}\right)$ with respect to α such that $\check{\rho}\left(x^{\prime}, 0, \eta^{\prime}\right)=\zeta$ for $\left|\eta^{\prime}\right| \gg 1$, and $\check{\theta}, \check{a}_{j}$ and \check{b}_{j} are also defined analogously. (See [2].) The $a_{j}\left(x, \eta^{\prime}\right), b_{j}\left(x, \eta^{\prime}\right)$ are smooth $m \times m_{1}$ matrices, defined on a conic neighborhood of ($\bar{x}, \bar{\eta}^{\prime}$), which have the asymptotic expansions $a_{j} \sim \sum_{k=0}^{-\infty} a_{j k}, b_{j} \sim \sum_{k=0}^{-\infty} b_{j k}$. Here $a_{j k}\left(x, \eta^{\prime}\right), b_{j k}\left(x, \eta^{\prime}\right)$ are homogeneous in η^{\prime} of degree $k, k-1 / 3$, respectively, and if we write

$$
e^{-i \theta} P(x, D)\left\{e^{i \theta}\left(A_{0}(\rho) a_{j}-i A_{0}^{\prime}(\rho) b_{j}\right)\right\}=A_{0}(\rho) c_{j}-i A_{0}^{\prime}(\rho) d_{j},
$$

$c_{j} \sim \sum_{k=1}^{-\infty} c_{j k}, d_{j} \sim \sum_{k=1}^{-\infty} d_{j k}$, where $c_{j k}\left(x, \eta^{\prime}\right), d_{j k}\left(x, \eta^{\prime}\right)$ are homogeneous in η^{\prime} of degree $k, k-1 / 3$, respectively, then $c_{j k}=0$ for $\rho \geqq 0, c_{j k}=O\left(x_{n}^{\infty}\right)$ as $x_{n} \rightarrow+0$ for $\alpha<0,\left|\eta^{\prime}\right|=1$, and so are $d_{j k}$. Such a_{j}, b_{j} have been constructed in [5], $\S \S 3$ and 4 , so that $a_{j 0}=W_{1} g_{j 0}+\rho W_{2} h_{j 0}, b_{j 0}=W_{1} h_{j 0}+$ $W_{2} g_{j 0}$, where we have set $W_{0}\left(x, \theta_{x} \pm \sqrt{ } \rho \rho_{x}\right)=W_{1}\left(x, \eta^{\prime}\right) \pm \sqrt{ } \rho W_{2}\left(x, \eta^{\prime}\right)$ and $g_{j 0}\left(x, \eta^{\prime}\right), h_{j 0}\left(x, \eta^{\prime}\right)$ are $m_{1} \times m_{1}$ matrices homogeneous in η^{\prime} of degree 0 , $-1 / 3$, respectively. Moreover $\chi_{1}\left(\eta^{\prime}\right)$ is a cutoff function such that $A_{0}\left(\alpha\left|\eta^{\prime}\right|^{2 / 3}\right) \neq 0$ on supp $1-\chi_{1}$. More precisely, let $\chi(t) \in C^{\infty}\left(R^{1}\right)$ be a function, supported in $t>3 / 2$, such that $\chi(t)=1$ for $t>2$ and $\chi^{\prime}(t) \geqq 0$. Let t_{0} be a positive number such that $A_{0}(t)>0$ for $t \leqq 3 t_{0}$. We then set $\chi_{1}\left(\eta^{\prime}\right)=\chi\left(\alpha\left|\eta^{\prime}\right|^{2 / 3} / t_{0}\right)$. It should be pointed out that another cutoff function $\chi_{\varepsilon}\left(\eta^{\prime}\right)=\chi\left(\alpha\left|\eta^{\prime}\right|^{\varepsilon}\right)$ with $0<\varepsilon<1 / 2$ is adopted in [2] and that $\left(A_{0}^{\prime} / A_{0}\right)(\zeta)$ ($1-\chi_{\varepsilon}\left(\eta^{\prime}\right)$) belongs only to a bad class $S_{0,0}^{2 / 3}$.

In what follows we consider only the more difficult case where (3) is violated and concentrate our attention on the equation $\left.B G v\right|_{x_{n}=0}=f$. Noting that $\left(\begin{array}{l}\text { g }\end{array}-\theta\right)\left(x^{\prime}, 0, \eta^{\prime}\right) \in S_{1,0}^{0}$, we denote by Φ_{1} the Fourier integral operator with phase function $\theta\left(x^{\prime}, 0, \eta^{\prime}\right)-y^{\prime} \eta^{\prime}$ and with amplitude $e^{i(\varphi-\theta)\left(x^{\prime}, 0, \eta^{\prime}\right)}$. Let Φ_{1}^{-1} be an elliptic Fourier integral operator with the canonical transformation ϕ_{1}^{-1} such that $\Phi_{1} \Phi_{1}^{-1}$ and $\Phi_{1}^{-1} \Phi_{1}$ are the identities mod $O P S_{1,0}^{-\infty}$. Suppose $x_{n}=0$ and $\left(x^{\prime}, \xi^{\prime}\right)=\phi_{1}\left(y^{\prime}, \eta^{\prime}\right)$. We then have
(9)

$$
\Phi_{1}^{-1} G_{j}=\tilde{a}_{j}\left(1+L \chi_{1}\right)+\tilde{b}_{j} \mathcal{L}, \quad j=\underset{\sim}{=}, 2,
$$

where $\tilde{a}_{j}, \tilde{b}_{j} \in O P S_{1,0}^{0}$ and $\tilde{a}_{j}\left(y^{\prime}, \eta^{\prime}\right)=a_{j 0}\left(x, \eta^{\prime}\right), \quad \tilde{b}_{j}\left(y^{\prime}, \eta^{\prime}\right)=\left|\eta^{\prime}\right|^{1 / 3} b_{j 0}\left(x, \eta^{\prime}\right)$ $\bmod S_{1,0}^{-1}$. Moreover L, \mathcal{L} are the following Fourier multipliers defined by $(\hat{L w})\left(\eta^{\prime}\right)=L\left(\eta^{\prime}\right) \hat{w}\left(\eta^{\prime}\right)$ and so on, where $L\left(\eta^{\prime}\right)=\left(A_{-} / A_{+}\right)(\zeta)$, $\mathcal{L}=\left(K_{+}+\right.$ $\left.K_{-} L\right) \chi_{1}+K_{0}\left(1-\chi_{1}\right), \quad K_{ \pm}\left(\eta^{\prime}\right)=-i\left|\eta^{\prime}\right|^{-1 / 3}\left(A_{ \pm}^{\prime} / A_{ \pm}\right)(\zeta)$ and $K_{0}\left(\eta^{\prime}\right)=-i\left|\eta^{\prime}\right|^{-1 / 3}$ $\left(A_{0}^{\prime} / A_{0}\right)(\zeta)$. To derive precise estimates for these we set $\gamma=\left(\alpha^{2}+\left|\eta^{\prime}\right|^{-4 / 3}\right)^{1 / 4}$ and denote constants independent of τ by C and so on. Suppose $\left|\eta^{\prime}\right|$ $\geqq 1$. We then have

$$
\left|\partial_{\eta_{0}}^{k} \partial_{\eta^{\prime}}^{\beta} K_{-}\left(\eta^{\prime}\right)\right| \leqq C_{k, \beta}\left|\eta^{\prime}\right|^{-k-|\beta|} \gamma^{1-2 k}\left(1+O\left(\left|\eta^{\prime}\right|^{-1 / 3}\right)\right) .
$$

The analogous estimates also hold for K_{+}and K_{0} if $\alpha>0$ and $\alpha\left|\eta^{\prime}\right|^{2 / 3}$ $\leqq 3 t_{0}$, respectively. In particular, $K_{-}, K_{+} \chi_{1}$ and $K_{0}\left(1-\chi_{1}\right)$ belong to $S_{1 / 3,0}^{0}$. We have also

$$
\left|\partial_{\eta_{0}}^{k} \partial_{\eta^{\prime \prime}}^{\beta} L\left(\eta^{\prime}\right)\right| \leqq C_{k, \beta^{\prime}} \gamma^{k+3|\beta|}\left(1+O\left(\left|\eta^{\prime}\right|^{-1 / 3}\right)\right) \quad \text { for } \alpha>0 .
$$

Furthermore, setting $l\left(\eta^{\prime}\right)=L\left(\eta^{\prime}\right) e^{i(4 / 3) \alpha^{3 / 2}\left|\eta^{\prime}\right|}$, we obtain

$$
l\left(\eta^{\prime}\right)=i e^{-2 \tau \sqrt{\alpha}}\left(1+O\left(\zeta^{-3 / 2}\right)\right) \quad \text { for } \alpha\left|\eta^{\prime}\right|^{2 / 3} \gg 1
$$

Therefore $\left(L\left(1-\chi_{\varepsilon}\right) \chi_{1}\right)\left(\eta^{\prime}\right) \in S_{\varepsilon / 2,0}^{0}$ and $L \chi_{\varepsilon}$ is a Fourier integral operator with amplitude $\left(l \chi_{\varepsilon}\right)\left(\eta^{\prime}\right) \in S_{1-\varepsilon, 0}^{0}$ and with the following singular canonical transformation :

$$
\phi_{2}\left(y^{\prime}, \eta^{\prime}\right)=\left(y_{0}+2 \sqrt{ } \alpha\left(1-(1 / 3) \alpha^{2}\right), y^{\prime \prime}-(2 / 3) \alpha^{3 / 2} \eta^{\prime \prime} /\left|\eta^{\prime}\right|, \eta^{\prime}\right),
$$

which is similar to (3.33) in [2].
Now, applying Φ_{1}^{-1} to $B G v=f$, from (6) through (9) we have

$$
\begin{equation*}
\Phi_{1}^{-1} B G_{0} v_{0}+\Phi_{1}^{-1} B\left(G_{h} v_{h}+G_{e} v_{e}\right)=\Phi_{1}^{-1} f \tag{10}
\end{equation*}
$$

Here $\Phi_{1}^{-1} B G_{0}=\Phi_{1}^{-1} B G_{1} q_{1}+\Phi_{1}^{-1} B G_{2} q_{2}$ and $\Phi_{1}^{-1} B G_{j}=\tilde{c}_{j}\left(1+L \chi_{1}\right)+\tilde{d}_{j} \mathcal{L}$, where $\tilde{c}_{j}, \tilde{d}_{j} \in O P S_{1,0}^{0} \quad a n d, \bmod S_{1,0}^{-1}, \tilde{c}_{j}\left(y^{\prime}, \eta^{\prime}\right)=B(x) a_{j 0}\left(x, \eta^{\prime}\right), \quad \tilde{d}_{j}\left(y^{\prime}, \eta^{\prime}\right)=\left|\eta^{\prime}\right|^{1 / 3}$ $B(x) b_{j 0}\left(x, \eta^{\prime}\right)$. According to $\left(H_{2}\right)$ and $\left(H_{3}\right)$, one can take a positive number δ such that, for $\alpha=0, R_{0}\left(x^{\prime}, \xi^{\prime}\right) \neq 0$ if $y_{0} \leqq \bar{y}_{0}-2 \delta$ and $R_{0}\left(x^{\prime}, \xi^{\prime}\right)=0$ if $y_{0}>\bar{y}_{0}-\delta$ and $m_{1} \geqq 2$. We then take q_{1}, q_{2} so that $q_{1}\left(y_{0}\right)=1$ for $y_{0}>\bar{y}_{0}$ -6δ and $q_{2}\left(y_{0}\right)=1$ for $y_{0}<\bar{y}_{0}-7 \delta$. By (4) we may also reduce (10), as in [5], $\S 5$, to the following equation only for v_{0} :

$$
\begin{equation*}
a\left(1+L \chi_{1}\right) q_{1} v_{0}+b \mathcal{L} q_{1} v_{0}+c\left(1+L \chi_{1}\right) q_{2} v_{0}+d \mathcal{L} q_{2} v_{0}=f_{0} \tag{11}
\end{equation*}
$$

where a, b, c and $d \in O P S_{1,0}^{0}$ are $m_{1} \times m_{1}$ matrices. Besides, setting

$$
a=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], \quad b=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right], \quad v_{0}=\left[\begin{array}{c}
v_{1} \\
v_{2}
\end{array}\right] \quad \text { and } \quad f_{0}=\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right],
$$

where a_{11}, b_{11}, v_{1} and f_{1} are scalar, and denoting by $a_{11}\left(y^{\prime}, \eta^{\prime}\right)$ the principal symbol of a_{11} and so on, we have, for $y_{0}>\bar{y}_{0}-3 \delta, a_{12}\left(y^{\prime}, \eta^{\prime}\right)=O(\alpha)$, $a_{21}\left(y^{\prime}, \eta^{\prime}\right)=O(\alpha), a_{22}\left(y^{\prime}, \eta^{\prime}\right)=I_{m_{1}-1}$ and $b_{11}\left(y^{\prime}, \eta^{\prime}\right)=1$. Hereafter I_{k} stands for the identity matrix of degree k. Moreover by virtue of $\left(H_{1}\right)$ we can assume $\arg a_{11}\left(y^{\prime}, \eta^{\prime}\right) \subset\left[-\pi / 2,\left(\pi-\delta_{1}\right) / 2\right]$ for $\alpha=0$. Furthermore $\left(H_{2}\right)$ yields, as in [11], p. 540, that, for $y_{0}<\bar{y}_{0}-4 \delta, d\left(y^{\prime}, \eta^{\prime}\right)=O(\alpha), a\left(y^{\prime}, \eta^{\prime}\right)$ $=I_{m_{1}}+O(\alpha), c\left(y^{\prime}, \eta^{\prime}\right)=I_{m_{1}}$ and that $\operatorname{Re} a\left(y^{\prime}, \eta^{\prime}\right)^{-1}$ is positive definite for $\alpha=0$ and $y_{0}<\bar{y}_{0}-2 \delta$. Finally, when $m_{1} \geqq 2$, $\left(H_{3}\right)$ implies that $a_{11}\left(y^{\prime}, \eta^{\prime}\right)$ $=O(\alpha)$ for $y_{0}>\bar{y}_{0}-\delta$.

Now, a basic a priori estimate for (11) is the following :

$$
\left\|\gamma v_{0}\right\|_{s}^{2} \leq C_{1} \tau^{-1}\left\|\gamma^{-1} f_{0}\right\|_{s}^{2}+O\left(\left\|\gamma^{-1} v_{0}\right\|_{s-1}^{2}\right)
$$

for $\tau \gg 1$ and $v_{0} \in H^{s+1 / 3}\left(R^{n}\right)$ with supp $\hat{v}_{0}\left(\eta^{\prime}\right) \subset\{\tau \gamma \ll 1\}$. To prove this we use also
$\operatorname{Re}\left(\mathcal{L} v,\left(1+L \chi_{1}\right) v\right) \geqq C_{2} \tau\left(\left\|\gamma \chi_{1} v\right\|^{2}+\left\|\gamma^{-1 / 2}\left(1-\chi_{1}\right) v\right\|_{-1 / 2}^{2}\right)-O\left(\|v\|_{-1 / 2}^{2}\right)$
for $v \in L^{2}\left(R^{n}\right)$ with supp $\hat{v} \subset\left\{\tau^{2} \alpha \ll 1\right\}$, where $C_{2}>0$. To deduce the regularity near the hyperbolic region we need the following a priori estimate. Suppose $p\left(y^{\prime}, \eta^{\prime}\right) \in S_{1,0}^{0}, \quad 0 \leqq p\left(y^{\prime}, \eta^{\prime}\right) \leqq 1$ and $p \circ \phi_{2}\left(y^{\prime}, \eta^{\prime}\right) \leqq$ $p\left(y^{\prime}, \eta^{\prime}\right)$. Then

$$
\left.C_{3} \tau \tau\left\|\gamma p v_{1}\right\|_{s}^{2}+\left\|p v_{2}\right\|_{s}^{2}\right) \leqq\left\|\gamma^{-1} p f_{0}\right\|_{s}^{2}+O\left(\left\|\gamma v_{1}\right\|_{s-s_{0}}^{2}+\left\|v_{2}\right\|_{s-\varepsilon_{0}}^{2}\right)
$$

for $\tau \gg 1$ and $v_{0} \in H^{s+1 / 3}\left(R^{n}\right)$ such that supp $\hat{v}_{0} \subset\left\{\left|\eta^{\prime}\right|^{-\varepsilon}<\alpha \ll \tau^{-2}\right\}$ and $W F\left(v_{0}\right) \subset\left\{y_{0}>\bar{y}_{0}-\delta\right\}$, where $\varepsilon_{0}=1 / 2-(3 / 4) \varepsilon$ and C_{3} is a positive number independent of p. Furthermore to conclude that $v_{0} \in H^{\circ}\left(R^{n} \cap\left\{y_{0} \ll \bar{y}_{0}\right\}\right)$, where v_{0} is a solution of (11), we use the following: Let $f\left(y^{\prime}\right)$ be a distribution in R^{n}, supported in a compact set $\subset R^{n} \cap\left\{y_{0} \geqq 0\right\}$. Then $(1+L)^{-1}\left(1-\chi_{\varepsilon}\right) \chi_{1} f \in H^{\circ}\left(R^{n} \cap\left\{y_{0}<-\delta\right\}\right)$ for any $\delta>0$. It should be pointed out that $(1+L)^{-1}\left(1-\chi_{\varepsilon}\right) \chi_{1}$ belongs only to a bad class $O P S_{0,0}^{1 / 3}$ and hence does not have the pseudolocal property.

References (continued from [I])

[11] Eskin, G.: Comm. in P. D. E., 1, 521-560 (1976).
[12] Farris, M.: ibid., 6, 651-687 (1981).
[13] Kubota, K.: (preprint) (1984).
[14] Taylor, M. E.: Singularities in Boundary Value Problems (edited by H. G. Garnir). D. Reidel Publ., pp. 271-316 (1981).

