
4 Proc. Ja.pan Acad., 51, Ser. A (1985) [Vol. 61(A),

Instability of Periodic Solutions of Some Evolution Equations
Governed by Time.Dependent Subdifferential Operators

By Nobuyuki KENMOCHI*) and Mitsuharu OTANI**)

(Communicated by K6saku YOSD., M. J..., Jan. 12, 1985)

Let H be a Hilbert space with norm I" ], and #(H) be the set of all
proper lower semicontinuous convex functions from H into (--oo, oo].
Given a T-periodic mapping t from R into O(H), and a T-periodic func-
tion f in Lo(R H) (i.e. r= for t e R, and f(t+ T)=f(t) for a.e. t e R),
we consider the equation
(E) u’(t)+3t(u(t)) f(t), t e J,
where J is an interval in R, u’(t)=(d/dt)u(t) and * is the subdifferential
of . For related studies on (E) we refer to [2, 4, 7, 8, 11, 12, 13].

In [3], Baillon and Haraux treated he time-independent case of
i.e. ’, and proved that any solution on J=[t0, ) is asymptotically T-
periodic in the weak topology of H and the difference of any two T-periodic
solutions is a constant vector on R. Subsequently, Haraux [5] and Ishii
[6] discussed the equation from the same viewpoint as in [3], when
and f is almost periodic on R. In this paper we shall show by a simple
example in 3-dimensional space that the equation with the time-dependent

* is essentially different in nature from that with the time-independent

1. A flow in 3.dimensional space. We take 3-dimensional space R
as H, and denote by x=(x, x, x) a generic point in R. Now, for each
t e R and O e [0, ), let us consider the operator Ro(t) from the x,x2-plane

X0= {(x, x, 0) x, x e R} into R which is defined as follows"
( 1 ) Ro(t)x=(x(t), x(t), x(t)), x e Xo,
where x(t)=r(cos O cos (O-a)+ sin O sin (O-a) cos t), xz(t)=r(sin O cos (O-a)
--cos0 sin (0-a)cos t), x(t)=r sin t sin (O--a)and x=r(cosa, sina, 0),
0a<2z. The operation xRo(t)x geometrically means the rotation of x
around the line lo"--x tan0+x=x=0 in t-degree. From the definition
of Ro(t) we immediately see that
( 2 ) Ro(t) is linear and isometric for any t e R and O e [0, u), and
(3) Ro(t) is a C-function of t for any x e X0 and O e [0, ).

For the moment we fix a number O with 0<0<u. For each t e R we
define the operator S(t) from X0 into R by
( 4 ) S(t)=So(t-2nu)[So(2)] for t e [2n, 2(n+ 1)u), n e Z,
where

*) Department of Mathematics, Faculty of Education, Chiba University, Chiba,
Japan.

**) Department of Mathematics, Faculty of Science, Tokai University, Hiratsuka,
Kanagawa, Japan.



No. 1] Periodic Solutions of Some Evolution Equations 5

Ro(t) or 0_< t_<,
So(t)

[R(t--)Ro() or zt<=2,
and

[S0(2)]=the identity on Xo, [So(270]n--{[So(27)]-} :or n<0.
Also, we denote by X(t) the image of X0 under S(t), i.e. X(t)=S(t)Xo.
Clearly, if t e [2n, (2n+ 1)z] (resp. t e [(2n+ 1), 2(n+ 1)]), then X(t) is the
plane in R which is given by rotating X0 around the line lo" x=x=O
(resp. l) in (t-2n)-degree (resp. (t-=-2n)-degree). Moreover,
( 5 ) X(n)=Xo, X(t+2n)=X(t) or all n e Z and t e R.

Proposition 1. Let Ot?<zr, and S(t) be as above. Then we have"
($1) For each t e R, S(t) is a linear isometric operator from Xo onto

x(t).
($2) s(o) is the identity on Xo.
($3) S(2n)x=r(cos(a+2nt), sin (a+2nt), 0) for any x=r(cosa, sin a,

0), r=lx I, 0<<2.
($4) S(t)x=S(t-2nu)S(2nu)x for any t e R, n e Z and x e Xo.
($5) (i) For each x e X0, S(.)x is a Lipschitz continuous function on

R with Ix] as a Lipschitz constant and belongs to C(R\A; R), where
zl={nz;neZ}. (ii) The right (resp. left) derivative (d//dt)S(t)x (resp.
(d- / dt)S(t)x) exists for every t e R and x e Xo, and (d / dt)S(t)x e X(t)+/-- the
orthogonal complement of X(t) in R for every t e R and x e Xo. (iii) For
x e Xo, (d/dt)S(t)x=O for some t e R if and only if x=0.

($6) (i) If x e Xo, x=/=O and S(.)x has a period TO, then T=2n for
some n e N. (ii) Let x e Xo, x=/=O and n e N. Then S(.)x is 2n-periodic if
and only if O=ku/n for some k e N. (iii) If x e Xo, x=/=O and / is irra-
tional, then S(.)x has no. period.

($7) For each x e Xo, S(.)x is almost periodic on R.
Proof. Properties (S1)-($5) immediately follow from (1)-(5). Now

we prove (i) of ($6). Let T0, x e Xo and x=/=0, and suppose that
( 6 ) S(t+ T)x =S(t)x for all t e R.
Put T=To+2nzwithOgTo2andneNorn=O. Then it suffices to show
that T0=0 and n e N. For this purpose we show that any of the following
three cases (a), (fl), if) never occurs" (a) 0T0. (fl) To=. if) uT02z.
First assume (a) holds. Then we note that (6) with t--0 and (4) yield
( 7 ) x=S(T)x-- Ro(To)[So(2Z)]nx.
Hence x e XoX(To)=lo. Since Ro(To) is the identity on 10, it follows from
(7) that x=[So(2)]x. From this and the equality (6) with t----- To we see
that

x--[So(2)]nx=S( To+ T)x=S(-- To)x=Ro(-- To)x.
Therefore xeXoX(--To)=l. Since/o/={0}, we have x=0. This is a
contradiction. Similarly, under () or if) we get a contradiction. Thus
(i) of ($6) holds. Property (ii) of ($6) is easily derived from ($3) and (6),
and subsequently (iii)of ($6) holds. Finally, we show ($7) by using the
following Bochner’s criterion for the almost periodicity (cf. Amerio-Prouse
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[1])" A function f e C(R; R) is almost periodic on R if and only if for any
sequence {s} in R, there exists a subsequence {s} of {s} such that f(t+s)
converges in R uniformly in t e R. Now, let {s} be any sequence in R and
x----r(cosa, sina, 0). Then, putting
s=2n+r, n e Z, r e [0, 2), 2n0=2m+0, m e Z, 0 [0, 2),

we obtain rom ($3) and ($4) that
S(t+ s)x S(t+ s 2n)S(2n)x S(t+ r)x

where x r(cos (a+2n0), sin (a+2n0), 0)= r(cos (a+O), sin (a+0), 0).
Here, extract a subsequence {k} of {k} so that v-->r0 e [0, 2] and
e [0, 2]. Then x-->Xo=r(cos (a+00), sin (a+00), 0) e X0 in R. Therefore,
by ($1) and (i) o ($5),

S(t+s)x-Z(t+ro)Xol<=lS(t+)x-Z(t+r)Xol+lS(t+)xo-S(t+ro)Xo

This shows that S(t+s)x converges to S(t+o)Xo in R uniformly in t e R.
2. An example. With the same notations as in the previous section,

for each t e R we put

(x)= {0 if xeX(t),
if x e R\X(t).

Clearly Ct e (R) with D(3)=X(t), and 3(x)=X(t)+/- for any x e X(t). By
(5), the mappingt is 2z-periodic on R. Moreover, ($5)implies that for
every x e Xo, u(t)-S(t)x gives a solution to the equation
( 8 ) u’(t)+8(u(t)) O, t e R.
Denoting by the set of all T-periodic solutions of (8), we obtain imme-
diately the ollowing propositions from the facts in the previous section.

Proposition 2. Suppose that O=ku/n e (0, ) for some k, n e N. Then
every solution u of (8) belongs to, and for any u, v e with u:/:v the

difference u--v is not constant on R. Moreover we have ={0}.
Proposition 3. Suppose that 0/ is an irrational number in (0, 1).

Then r=(0} for every TO, and hence, if u is a solution of (8) and uO
on R, then u is not T-periodic on R for any TO. Moreover, every solu-
tion t of (8) is an almost periodic function on R such that ]u(t)[=[u(O)[ for
all t e R.

Remarkc. In general, for a solution u to (E), --u’(t)does not coincide
with the minimal section (3t(u(t))--f(t)) of 3(u(t))--f(t). This is one
of the reasons why the behavior of solutions is quite different rom that
of the equation with the time-independent *--.

The detail discussion on the behavior of solutions to (E) will be made
in the authors’ ortlcvming papers [9, 10].
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