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1. Introduction. We consider the potential theory for recurrent
Markov processes introduced by T. Ueno [4]. He studied a pair of meas-

ghures/ and/ satisfying /(.)=/h(.),/(.) /, (.) where h(x ) is
the hitting measure to the set K. In this paper we prove that in the sym-
metric case the measure , multiplied/ by the Ueno capacity is the equi-
librium measure on KL. Further we show that the equilibrium
potential induced by , is the hitting probability for K before attaining to
L. We anticipate that such a pair of measures/ and/: is a new proba-
bilistic characterization of the equilibrium measure.

2. Preliminaries. We refer the reader to [2] for all terminology and
notation not explicitly defined here. Let R be a separable Hausdorff locally
compact space containing at least two l>ints and satisfying

(R.1) For each point x e R, we can take a cvuntable base of neighbor-
hoods of x consisting of arcwise connected open sets,

(R.2) R is connected.
We denote by B the topological Borel field of subsets of R. For a set A e B
and a path function X(t) from [0, c) to R, a is defined by

a=in {t>=O]X(t)e A}, if such t exists,
c, otherwise.

We denote by _, the smallest Borel field of subsets of the sample space W
containing {w IX(t, w) e A} for all A e B and t_>_0. Let {P(.), x e R} be a
system of probability measures on satisfying

(P.1) Px(E) is a B-measurable function o x for each E e _,
(P.2) P({w]X(O, w)=x})=l for each x e R,
(P.3) quasi-left continuity,
(P.4) Markov property.

In order to study a broad class of recurrent Markov process Ueno [4]
introduced the following assumptions (X.1)(X.5) which we follow.

(X.1) Recurrence" P(X(t) e A for some 0tc)=l for any x e A,
AeB.

We define the hitting measure h(x,.) for the set A e B by
ha(x, E)=Px(X(a) e E, ao), x e R, E e B.

(X.2) For any continuous function f on A,

hf(x)=; ha(x, dy)f(y)

is continuous in A, where A is a closed set in R containing an inner point.
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(X.3) For non-negative continuous function f in A, hf(x) is either
strictly positive or 0 for all points x of any one component of
A, where A is a closed set in R containing an inner point.

(X.4) For any continuous function f on R, the resolvent operator is
continuous on R.

(X.5) There is no point of positive holding time.
Now, we introduce the Green measure

G(x,A)=E ;(X(t))dt x e R, A.e B,

for any closed set L containing an inner point, where takes 1 on A, 0
on A respectively. Let be the family of all {K, L}, where K and L are
mutually disjoint closed sets in R and in particular K is compact. Ueno [4]
proves that for each {K, L} e there is a unique pair of measures Z[ and
/ with total mass 1 on K and L respectively, satisfying

p(. l:h(. )-- :(dx)h(x, ),

Khl(’) Z ( p[(dx)h (x,
JK

Applying these/,/:, Ueno introduces his own Green capacity. For {K, L}
and {K’, L’} in , put
(2.1) C(:,)(K’, L)=/h,,(K’),

C(:,,)(K, L)=C(,)(K’, L)-, when K’K,
where
(2.2) h,(x, E)=P(a<:a, X(a) e E), E e B.

C(,(K’, L)=C(,(K U K’, L).C(v,,)(K’, L),
when {K, L}-{K’, L}, where the notation {K, L}-{K’, L} denotes {K U K’, L}
e . For a sequence a= ({K, L}, {K, L}, ..., {K, L}) of satisfying {K, L}
->{g, L}.-. +-{g, L}-+{K’, L’}
(2.3) CT,)(K’, L’)--C(,(K, L).C(,,(K, L) C(,)(K’,
Lemma 3.2 in [4] shows that such C,)(K’, L’) does not depend on the
choice of a. Now fixing any {K0, L0} e , we call C(K, L)--C(o,o)(K, L) the
Green capacity of K with respect to L. Setting
(2.4) (. )= C(K, L)[(. ),
we introduce the measure

(2.5) m(.)= (dx)G(x, )+(dx)G:(x, .).

Then every Green measure G(x, .) is absolutely continuous relative to m,
that is, it has a density function g(x, y) satisfying

(2.6) G(x, A)--[ g(x, y)m(dy).
JA

:. Theorems. In this section we add following assumptions regard-
ing the density unction of the Green measure.

(A.1) g(x, y) is lower semi-continuous with respect to x.
(A.2) symmetry: g(x, y)--g(y, x)

holds almost everywhere relative to m.
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Theorem 2 has no bearing on above both assumptions. Theorem 1
and Theorem 3 are regardless of the assumption (A.1).

Theorem 1. Assume that (A.2) holds. For {K, L} e we have
Kg ----1, a.e. (m)on K.

Proof. Let E be any compact subset of K. Observe that G(x, E)-O
for x e L. Applying (2.5) and the symmetry (A.2), we get

m(dx)= (dx)G(x, E)+ (dx)G(x, E)

(dx)( gL(x, y)m(dy))= (dx)( gL(y, x)m(dy))= ( g(y, x)(dx))m(dy)= g(y)m(dy).

This implies
Kg =1, a.e. (m)on K.

By Theorem 1 , is the equilibrium measure or the kernel g(x, y).
Moreover in virtue of (2.4)

(R) C(K, L)t(R) C(K, L).
That is, the. total measure of , is equal to the Ueno capacity.

In the next place we show the important properties of , under the
general condition. Such properties are known in the Brownian case. See
Port-Stone ([3], p. 191).

Theorem 2. Suppose that {K’,L}, {K,L} e and K’cK. Then we
have

(i)
where h,, is defined by (2.2),

(ii) C(K’, L)=[(dx)P(a,a).
Proo.f. The first equality follows rom Theorem 3.1 of Ueno [4]. By

applying (2.1), (2.3) and the definition (2.4) of ,[, we obtain
C(K’, L)=C(K, L)C(,L)(K’, L)--C(K, L)l[h,,(K)

=,h,.(K’)= ,f(dx)Px(a,<

Subsequently, we prove that the potential of ,[ is the hitting proba-
bility of K before reaching L.

Theorem :. Let gL(x, y) be symmetric. Assume that [ and for x e
(L U K)c, hK.(x, .)are absolutely continuous with respect to. the measurv
m. Then we have

g --P.(a<a), a.e. (m).
Proof. By the strong Markov property and (2.6), what is called the

undamental identity

(3.1) g(x, y)=g(x, y)+.[ hK, L(x, dz)gL(z, Y)

is obtained almost everywhere in y relative to the measure m. According

to (3.1) and the absolute continuity of , we get for x e L

(3.2) g(x) g(x)--[ h,(x, dz)g,(z).
J
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Now the first term of the right hand in (3.2) vanishes excepting m-measure
zero on (K [J L). In fact for any compact set E contained in (K U L)

f g(x)m(dx)= G(x, E)I[(dx)

and note that G(x, E)=0 when x e K. Therefore it follows from (3.2)
that

g,(x)=[ h,(x, dz)g,(z), a.e. (m) on (K t2 L).
On the strength o Theorem 1 and the absolute continuity of h,(x,.) we
see that
(3.3) g=P.(aa), a.e. (m) on (K(JL).
Moreover combining Theorem 1 with P.(a<a)= 1 on K, we find that the
equality (3.3) holds almost everywhere on K. Therefore we have
(3.4) g=P.(aa), a.e. (m) on L.
Also we can show that
(3.5) g,,=O, a.e. (m) on L,
by the same method as the first term. of the right hand in (3.2). We com-
plete the proo of Theorem 3 by (3.4) and (3.5).

Proposition 1. If f and g are excessive and f-g except on a null
set, then f=g everywhere (Blumenthal-Getoor [1], p. 80).

Proposition 2. If for a subset A of R, r is defined as

r-- inf {t0 X(t) A}, if such t exists,
co, otherwise,

then
()
()

a, <=r and a=r if X(O) e A,
t+a Ot is an increasing function of t and

lim (t+a
t0

where O, denotes the shift transformation (Blumenthal-Getoor [1], p. 53).
Theorem 4. Suppose all the assumptions in the previous theorem.

If g(x, y) is lower semi-continuous with respect to x, then we have
g =P.(aa), on L.

Proof. It suffices to prove that g, and P.(aa) are excessive on
L. In order to consider the case of the potential g , note that there
exists a Borel function f such that ,(dx)=f(x)m(dx). Then we have

By Lemma 4.1 of Ueno [4] Gf is suerharmonie on L, namely for every
z e L and every oen ball VL with the center z

g,(x) =>[ h(x, d-y y)",( y).
Jv

By combining the assumption (A.1) with Fatou’s lemma, g, is lower
semi-continuous on L. Hence g,[ is excessive on L.

Next we show that P.(aa) is excessive on L. Let
Qt(x, E)=P(X(t) e E, at)
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for x e L, t>=0 and EL. Then it is sufficient to see that
(3.6) Qtpx(a: <: aL) Px(a: aL)
and
(3.7) lim QtP:(a:a)--Px(a:a).

t$0

.It follows from the Markov property that for x e L and t0

(3.8) QtP(a:a)=.[ Px(X(t) e dy, (L t) Py((YK (L)

=E,(Pz(t)(a_.a) az,t)
=P(a:oOtaL oOt, aLt)

By means o Proposition 2, t+a, is monotonely increasing with respect
to t and

t+a lim (t+a ) r a,.
t0

Consequently the inequality (3.6) is shown or t0 with the help o] (3.8).
Since QtPx(a:<:aL)=P(a:<a) for t=0, (3.6) is obvious. To check the
relation (3.7) for x e L, let t approach to 0 in (3.8).
(3.9) lim QtP(a,<a) lim Px(t+ a, Ot < a).

0 t0

By applying (3.9) and Proposition 2, we have for x e (K [2 L)
lim QtP(a:a)=P(r:a)=P(a,aL).
t$0

Also ]or x e K, a=0. Thus in virtue o] (3.9)
lim Q p (aK a) lim P(t a) P(0 a) P (aK a,).
t$0 t0

Hence the equality (3.7) holds on L.
ReFerences

1 R. M. Blumenthal and R. K. Getoor: Markov Processes and Potential Theory.
Academic Press, New York-London (1968).

2 K. Kitamura’. Some theorems on recurrent Markov processes. Nat. Sci. Rep.
Ochanomizu Univ., 3.2, 73-86 (1981).

3 S. C. Port and C. J. Stone: Brownian Motion and Classical Potential Theory.
Academic Press, New York (1978).

[4] T. Ueno: On recurrent Markov processes. Kodai Math. Seminer Report, 12,
109-142 (1960).


