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1. Introduction. Let /2 be a bounded domain of R, N=2, with
smooth boundary F and with the outer unit normal vector ,r on F. Let
R be divided into an infinitely many number of cubes C, i e N, with volume
o (2e) and let B,(rO be a closed ball of radius r (e) centered in C. From
/2 we remove all such balls and obtain a D(f2) with n holes. Under the
case noo, r0, a parameter, which determines the behavior of the
Laplacian on D with the Dirichlet condition, is known by M. Kac [2], J.
Rauch and M. Taylor [3], D. Cioranescu and F. Murat [1]. That para-
meter is given by lim n(r)- or N3 and lim n/llog r or N=2, means
values o a fixed sequence decreasing to zero. Now, we show a different
parameter is important for the Robin problems.

From /2 we remove all balls B,(rO such that dist (B,(rO, F)>= and
obtain R with n holes. Let a be a positive constant and , the outer unit

We consider the Robin problem" for fe L2(/2) find

zlu’=f a.e. in R’,
(1) u +cru= 0 a.e. on R’.

Theorem 1. Let u be the solution of (1) and t e H1([2) an extension

of u to. be harmonic in F, F’=9\R. Assume that r*--O and n’--.oo with
the conditions z]=limn*(r*)-1, 0z]oo. Then t" converges weakly in
H([2) to the solution of the problem:

--zlu + aSu f a.e. in
(2)

3u+au=O a.e. on F.

Here [l means the volume of and S means the surface area of the unit
sphere of R.

2o Abstract scheme. Let/2 be the same domain as in Section 1. We
introduce a certain limit of the minus Laplacian, which corresponds to one
of versions for theorem 1.2 of Cioranescu-Murat [1] in the case of Robin
condition.

For a subdomain G of/2 we regard all functions of L(G) as functions
of L(9) vanishing outside G. In this section R
satisfying (a.1) below. Let a’: H(RO XH(RO-+R be a bilinear form defined
by

normal vector on
ue H(R) such that
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a(v, w)--f, ’v.P’wdx -a fo,,
vwda.

Let us consider (1). For (1) we have

( 3 ) a(u, v)=[ fvdx for all v e H(R).
JR

We consider the behavior of the solution of (3). We use the norm of H(R)
defined by ]v],(,)=]]v

We set F=9R. We assume the following conditions.
(a.1) F does not meet F and its interior kernel is a nonempty set with

locally Lipschitz boundary.
(a.2) There exists a family of extension maps T H(R)H(9) such that

(ii) if limsup a(v, v’) then Tv--vO in L(9).
(a.3) There exists a constant c such that

a’(v, v)cilvll.(.> for all v e H(R) and
(a.4) There exists a family (8 e W’(R)} satisfying the conditions below.

(i) 6=1 a.e. on F.

(ii) Set ’= T’O. Then 5 w >1 in H(9) as 0.
(iii) limsup a’(O, ’).
(iv) There exists e W’(9)* such that_. (Z8,)+aO,(3F

s
) in W,(9)*,

W.(9)* means the dual space of W’(9), Z means the characteristic func-
tion of R and (F) means the measure defined by

v) = vda for all v e W’(9).((F’),
JF

Theorem 2. Let u be the solution of (3) and set =Tu. Under all
the conditions from (a.1) to (a.4), ’ converges weakly in H(9) to u, where
u is the solution of

--Au+u=f a.e. in 9,
(4) ,+au=O a.e. on F.

Proof. Substituting v=u into (3) and using (a.2) and (a.3) we can see

We can choose a weakly convergent subsequence (u} such that u
in H(9), where u=u’. It suffices to show

(5) I u.dx+(,u+ Ir uda=I fdx
or all 5 e C(), where (, denotes the dual pair between W’(9)* and
W’(9). We can substitute V=On into (3), where 8=8-. We set R=R
and F=F’. Thus
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Here we have used the equality Un---UnO a.e. on F. By the definition of

u and the conditions (a.2)-(ii), (a.4)-(ii) and (a.4)-(iii) we have V W>Vu,
tV s

>V in L(t9), t--O s
>0 in L() and

s
>1 in L(9), u in

L"(F). Thus,

I O(Vu’V--f)dx+I uda
Rn F

Notice Zg=Z[g(g)-g], where Z=Z. herefore,

Rn Fn

(-V. (z5)+O(F), )-
Using (a.2)-(ii) and (aA)-(ii) we have g g, (--g)g 0 in

L(9) gO w W0 in L(). Clearly,
wu in ’(). Also, using

(a.4)-(iv) we get

Rn OFn

Therefore we get (5). The proof is completed, q.e.d.. Proof of Theorem 1. We introduce special functions such that
0=1 on 9{B()’lgign}, e=0 on U(B(DB(r) "lgign} and
0/,+a0 =0 on F(cR). By a similar way to that in [1] we can see
unctions satisfies (a.4) with =aS/[9[. We show (a.3). We set E
C R, 1gign. Choese so small that

2,, r-’drmax ,, p’-dp, (r9’- 191.

Here we use n [9[/(2D, 0. For the equality,

using the Sehwar inequalities twice on the left hand side, multiplying
both sides by -, integrating them over (f,O()), p()=su{rO"

e N}, next, over the unit shere OB(1), we get the inequality

]v]dx3() ]9. If ,
(,)

We denote by G, a non-empty set CR, in. For sufficiently small
we have a Lipsehitz unetion h, such that G,={(x’, x)’[x,], liN--1,
Oxh,(x’)} and CN={(x’,h,(x’)’[x,],liN--1}, x’=(x,,...,
x_). Similarly, or the same v as the above we have a constant C inde-
pendent of such that
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G \JG Cl F

By these inequalities we can see (a.3). The arnily of extensions" H(R)
--H(9) in Theorem 1 is uniformly bounded with respect to their operator
norm (cf. [3]). So (a.2)-(i) holds. The condition (a.1) also holds. Lastly,
(a.2)-(ii) ollows from the act such that the linear operator" L(3B(rg) v
--v L(3B(r)) is bounded with norm one for 0rl. Here v(r,o)
=J(x+rro), where x denotes the center o B(r). The conditions of
Theorem 2 are all verified, q.e.d.
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