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1. Introduction. Let 2 be a bounded domain of RY, N =2, with
smooth boundary I" and with the outer unit normal vector v, on I'. Let
RY be divided into an infinitely many number of cubes C¢, ¢ € N, with volume
of (2¢)" and let B,(7°) be a closed ball of radius ¢ (<e) centered in C¢. From
2 we remove all such balls and obtain a D*(c Q) with »n° holes. Under the
case n°— oo, r*—0, a parameter, which determines the behavior of the
Laplacian on D* with the Dirichlet condition, is known by M. Kac [2], J.
Rauch and M. Taylor [3], D. Cioranescu and F. Murat [1]. That para-
meter is given by lim »*(r)”-* for N=3 and lim »°/|log r¢| for N=2, ¢ means
values of a fixed sequence decreasing to zero. Now, we show a different
parameter is important for the Robin problems.

From 2 we remove all balls B,(r®) such that dist (B,(+®), )= and
obtain R* with n® holes. Let « be a positive constant and »* the outer unit
normal vector on dR*. We consider the Robin problem: for fe L*(£2) find
u* ¢ H'(R®) such that

—dut=f a.e. in R,
(1) ou’
ov®

Theorem 1. Let u* be the solution of (1) and % e H'(2) an extension
of u® to be harmonic in F¢, F*=0Q2\R*. Assume that r*—0 and n*—oco0 with
the conditions p=lim n*(r)*-!, 0<p<oo. Then u* converges weakly in
H'(2) to the solution of the problem :

—du + S =f a.e. in 2,
(2) 12|
ou
Vr
Here | 2] means the volume of 2 and Sy means the surface area of the unit
sphere of R”.

2. Abstract scheme. Let 2 be the same domain as in Section1. We
introduce a certain limit of the minus Laplacian, which corresponds to one
of versions for theorem 1.2 of Cioranescu-Murat [1] in the case of Robin
condition.

For a subdomain G of 2 we regard all functions of L*(G) as functions
of L*(2) vanishing outside G. In this section R* means a subdomain of £
satisfying (a.1) below. Let a®: H'(R?) X H'(R*)—R be a bilinear form defined
by

+au:=0 a.e. on oR:.

+oau=0 ae.onl.
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a‘(v,w)zj Vv-dex+aj vwdao.
Rs

dRse
Let us consider (1). For (1) we have

(3) as(us, ’0)=th Sfvdx for all v € H'(R*).

‘We consider the behavior of the solution of (8). We use the norm of H'(R®)
defined by vt ze =V 2oy +11v [Z2cae-
We set F*=02\R*. We assume the following conditions.
(a.1) F* does not meet I" and its interior kernel is a nonempty set with
locally Lipschitz boundary.
(a.2) There exists a family of extension maps T¢: H'(R*)—H'(£2) such that
(1) limsup | T¢)| s rey,mcan < oo,
(ii) if limsup a*(v¢, v*)<oo then Tév¢—v*—0 in L* (D).
(a.3) There exists a constant ¢, such that
a*(v, V) = ¢, ||V Bz for all v € H'(R®) and ¢>0.
(a.4) There exists a family {¢° € W"~(R*)}, satisfying the conditions below.
(i) #=lae.onl.
(ii) Set@=T¢. Then §*—>1 in H'(Q) as e—0.
(iii) limsup a*(6:, 6°) < oo.
(iv) There exists 7 € W"'(£2)* such that
V() + b 5@F)—>7  in Wh(Q),
Wh(2)* means the dual space of W(2), X* means the characteristic func-
tion of R® and §(0F*) means the measure defined by

(3@F), v) =I vde  for all ve WH(%).
oFe

Theorem 2. Let u® be the solution of (3) and set 4*=Tu*. Under all
the conditions from (a.l) to (a.4), i converges weakly in H'(2) to u, where
u s the solution of

—du+ju=f  a.e.in f,
(4) ou
Ovr
Proof. Substituting »=wu* into (3) and using (a.2) and (a.3) we can see
Hmsup [|%*{| 10y < oo

+au=0 a.e.onl.

We can choose a weakly convergent subsequence {u,}, such that unim
in H'(Q), where u,=wu. It suffices to show
(5) L Pu-Vede+ (7, uld+ a L qua:L fedx

for all {e C~(2), where (,) denotes the dual pair between W"(2)* and
WHi(2). We can substitute v=6, into (3), where 8,=6*". We set B,=R*"
and F,=F¢. Thus
f 6.7u,-Vede + f u, Vode+a |  Cub.do+a j u,do
(6) Ra Ry aFn r
= f0.tdx.
Rn
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Here we have used the equality #,=u,0, a.e. on I'. By the definition of
u, and the conditions (a.2)-(ii), (a.4)-(ii) and (a.4)-(iii) we have Vﬁ,n—iWu,
§.7¢—257¢ in LA(Q)¥, 6,—0,—>0 in LX) and §,—>1 in LX), %,—>u in
LXI"). Thus,
[ 6.0 -ri—rOds+af uids
=[ 8.0 Pe—rOde+a| ko[ @GP0, -PE—FCldx

— f Tu-Ve—fO)do+ a j utde.
2 r
Notice x,&Vu, =%,V (i) —4,F7¢], where X,=X*". Therefore,

T, -Vo,de + o I u,0,5do
Ry aF,
— (=T - Q76,4 a8,66F ), nL>— j w, e, -redz.
Rn

Using (a.2)-(ii) and (a.4)-(ii) we have unVC—s'-—mVC, (un—-ﬂn)VC—s——w in

LAD)", 76,—250 in LXQ)¥. Clearly, Cii,—>tu in W(2). Also, using
(a.4)-(iv) we get

f w, V0, -Veds = j an79n~!7¢:dx+f (w, —i,)V0, - VEdz—s0,
Ry Q2 Q2

ru,-Ve,dx + ocj. u,0,8do—> T, ul).
Ry aFyp

Therefore we get (5). The proof is completed. q.e.d.
3. Proof of Theorem 1. We introduce special functions ¢° such that
*=1 on Q2\U{B,(e): 1<i<n?}, 46°=0 on U{B.,(e)\B,(r*):1<i<n} and
06° |9y +ab* =0 on oF*(CoR®). By a similar way to that in [1] we can see
functions ¢° satisfies (a.4) with 7=aS,7/|2]. We show (a.3). We set E,
=C:NR: 1<i1<n*. Choose ¢ so small that
N1/2¢ N1/2¢ 3 N N
2 J 7¥-1 dr max {j oVdp, (re)'-N}g_(_z_) 19].
78 e 7]
Here we use n°~|2|/(2¢)¥, e—~0. For the equality,
7 2
o of=[[ 2 dp+ o0, veR®), weaBW,
78 p
using the Schwarz inequalities twice on the left hand side, multiplying
both sides by 7¥-!, integrating them over (r¢, p,(®)), p.(@)=sup{r=0:
rw € E,}, next, over the unit sphere dB,(1), we get the inequality

fEt [Iv]zdx §3<%>NJ—§l[J‘E1 ]VvIde +IBB¢(T‘) Ivlzdg].

We denote by G, a non-empty set C:NR¢, i>n°. For sufficiently small ¢
we have a Lipschitz function , such that G,={(’, zy) : |2;|<e, 1IN -1,
0=zy<h,()} and CiNI'={@', h,@):|2,|Ze, ISISN-1}, &'=(x, -+,
Zy_). Similarly, for the same v as the above we have a constant C, inde-
pendent of ¢ such that
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f |v|2dxgcle<f |Vv|2dx+J |v]2da>.
G G cinr

By these inequalities we can see (a.3). The family of extensions: H'(R®)
—H'(2) in Theorem 1 is uniformly bounded with respect to their operator
norm (cf. [8]). So (a.2)-(i) holds. The condition (a.l) also holds. Lastly,
(a.2)-(ii) follows from the fact such that the linear operator : L*@B,(r¢)) > v
—v, € L*0B,(r®)) is bounded with norm one for 0<r<1. Here v,.(+*, )
=9(xi+rr°w), where z¢ denotes the center of B,(r®). The conditions of
Theorem 2 are all verified. q.e.d.
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