19. Infinitely Many Periodic Solutions for the Equation: $u_{tt} - u_{xx} \pm |u|^{s-1} u = f(x, t)$

By Kazunaga TANAKA

Department of Mathematics, Waseda University

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1985)

1. Introduction. In this article we shall study the nonlinear wave equation:

where s > 1 is a constant and f(x, t) is a 2π -periodic function of t.

Our main result is as follows:

Theorem. Assume that $1 < s < 1 + \sqrt{2}$ and $f(x, t) \in L^q_{loc}([0, \pi] \times \mathbf{R})$ (q=1/s+1) is a 2 π -periodic function of t. Then $(1)_{\pm}$ -(3) possessess an unbounded sequence of weak solutions in $L^{s+1}_{loc}([0, \pi] \times \mathbf{R})$.

To prove our theorem, we convert the problem to a simpler one by a Legendre transformation which is used in H. Brézis, J. M. Coron and L. Nirenberg [2], that is, we use the dual variational formulation for $(1)_{\pm}$ -(3). Next we use a perturbation result of P. H. Rabinowitz [3] asserting the existence of infinitely many critical points of perturbed symmetric functionals.

After completing this work, the author knew announcement of the result of J. P. Ollivry [6]. His result is analogous to ours for $(1)_+$ -(3) but under the following conditions:

1 < s < 2 and $f(x, t) \in E$ (see (4)).

Our result obviously contains his result. Moreover our growth restriction $1 < s < 1 + \sqrt{2}$ coincides with the condition which ensures the existence of an unbounded sequence of solutions of the semilinear elliptic equation:

$$\begin{aligned} -\Delta u = |u|^{s-1} u + f(x), & x \in \Omega, \\ u = 0, & x \in \partial \Omega, \end{aligned}$$

where $\Omega \subset \mathbb{R}^2$ is a smooth bounded domain (see P. H. Rabinowitz [3]).

2. Outline of the proof of Theorem. We shall only give outline of proof. Details will be published elsewhere.

We shall deal with the case $(1)_+-(3)$ (the argument is essentially the same for the case $(1)_--(3)$).

Let $\Omega = (0, \pi) \times (0, 2\pi)$.

We shall consider the operator $Au = u_{tt} - u_{xx}$ acting on functions in $L^{1}(\Omega)$ satisfying (2), (3). Denote by N the kernel of A. Consider the space (4) $E = \left\{ u \in L^{q}(\Omega); \int_{\Omega} u\phi = 0 \text{ for all } \phi \in N \cap L^{s+1}(\Omega) \right\}$

with L^q norm $\|\cdot\|_q$.

No. 3]

For any $u \in E$ there exists a unique $Ku \in C^{0,\alpha}(\overline{\Omega}) \cap E$ with $\alpha = 1 - 1/q$ such that A(Ku) = u. The operator $K: E \to E^*$ is compact.

For a given $f \in L^q(\Omega)$ we define the functional $I(u) \in C^1(E, \mathbf{R})$ by

$$I(u) = -(1/2)(-Ku, u) + (1/q) \|u - f\|_q^q$$

where (\cdot, \cdot) denotes the duality product between E^* and E. There is one-to-one correspondence between the critical points of I(u) and the weak solutions of $(1)_+-(3)$. This is so-called dual variational formulation of the problem $(1)_+-(3)$.

For technical reasons, we shall replace I(u) by a modified functional $J(u) \in C^{1}(E, \mathbf{R})$ defined by

$$J(u) = -(1/2)(-Ku, u) + (1/q) ||u||_q^q + (1/q) \cdot \psi(u) \cdot (||u - f||_q^q - ||u||_q^q).$$

where $\psi(u)$ will be defined analogously as in P. H. Rabinowitz [3].

Then we have the following propositions.

Proposition 1. There is a constant $\beta = \beta(||f||_q) > 0$ such that for $u \in E$, $|J(u) - J(-u)| \le \beta \cdot (|J(u)|^{(q-1)/q} + 1).$

Proposition 2. There is a constant $M = M(||f||_q) > 0$ such that

(i) $J(u) \in C^{1}(E, \mathbf{R})$ satisfies Palais-Smale condition on

$$\hat{\mathbf{A}}_{M} = \{ u \in E ; J(u) \ge M \}$$

(ii) $J(u) \ge M$ and J'(u) = 0 imply that I(u) = J(u) and I'(u) = 0.

Note that K is a compact self-adjoint operator in $E \cap L^2(\Omega)$. Its eigenvalues are $\{1/(j^2-k^2); j \neq k\}$. We rearrange the eigenvalues in the following order, denoted by

 $-\mu_1 \leq -\mu_2 \leq -\mu_3 \leq \cdots < 0 < \cdots \leq \nu_3 \leq \nu_2 \leq \nu_1$

with repetitions according to the multiplicity of each eigenvalue and denote by e_j and f_j the eigenfunctions which are corresponding to $-\mu_j$ and ν_j respectively. We assume moreover $||e_j||_q = ||f_j||_q = 1$ for all $j \in N$. Next we shall define the spaces E_n , E_n^{\perp} by

 $E_n = \operatorname{span} \{e_1, e_2, \cdots, e_n\},$

 $E_n^{\perp} = \{ u \in E ; (e_i, u) = 0 \text{ for } i = 1, 2, \dots, n \}.$

Proposition 3. There are constants $a_n > 0$ such that

$$(-Ku, u) \leq a_n \cdot \|u\|_q^2$$
 for all $u \in E_n^\perp$.

Moreover for any $\delta > 0$ there exists a constant $C_{\delta} > 0$ such that

$$a_n \leq C_{\delta} \cdot n^{-2(q-1)/q+\delta}$$
 for all $n \in N$.

Clearly there is a sequence of numbers: $0 < R_1 < R_2 < \cdots$ such that

 $J(u) \leq 0$ for all $u \in E_n$ with $||u||_q \geq R_n$.

Let $B_R = \{u \in E; \|u\|_q \leq R\}$ and $D_n = B_{R_n} \cap E_n$. Set

 $\Gamma_n = \{h \in C(D_n, E); h \text{ is odd and } h(u) = u \text{ if } \|u\|_q = R_n\}.$

Define

$$b_n = \inf_{h \in \Gamma_n} \sup_{u \in D_n} J(h(u))$$
 for $n \in N$.

Using the Borsuk-Ulam theorem and Proposition 3, we have

Proposition 4. For every $\delta > 0$ there is a constant $C_{\delta} > 0$ such that (5) $b_n \ge C_{\delta} \cdot n^{2(q-1)/(2-q)-\delta}$ for all $n \in N$.

 \mathbf{Let}

K. TANAKA

[Vol. 61(A),

$$U_n = \{u = t \cdot e_{n+1} + w ; t \in [0, R_{n+1}], w \in B_{R_{n+1}} \cap E_n \text{ and } \|u\|_q \le R_{n+1} \}.$$

$$A_n = \{H \in C(U_n, E) ; H|_{D_n} \in \Gamma_n, H(u) = u \text{ if } \|u\|_q = R_{n+1}$$

or $u \in (B_{R_{n+1}} \setminus B_{R_n}) \cap E_n \}.$

Define

 $c_n = \inf \sup J(H(u))$ for $n \in N$.

P. H. Rabinowitz [3] proved the following perturbation result.

Proposition 5. Assume that $c_n > b_n \ge M$. Then J(u) possesses a critical value in $[c_n, \infty)$.

Hence to prove our theorem, it suffices to show that $c_n = b_n$ is not possible for all large n. We have the following:

Proposition 6. If $c_n = b_n$ for all $n \ge n_0$, there exists a constant $\gamma = \gamma(n_0)$ such that

(6)

$$b_n \leq \hat{\tau} \cdot n^q$$
 for all $n \in N$.

Thus comparing (5) and (6), we see the inequalities are incompatible if $\sqrt{2} < q < 2$, i.e., $1 < s < 1 + \sqrt{2}$.

Hence there is a sequence $\{u_n\}_{n=1}^{\infty}$ of critical points of I(u) such that $I(u_n) \rightarrow \infty$ as $n \rightarrow \infty$.

So there exists the sequence of solutions $\{v_n\}_{n=1}^{\infty}$ of $(1)_+-(3)$ corresponding to u_n satisfying

 $\|v_n\|_{s+1} \to \infty$ as $n \to \infty$.

3. Remarks.

Remark 1. K. Tanaka [5] proved for all $s \in (1, \infty)$ there is a dense set of $f \in L^2(\Omega)$ for which $(1)_+-(3)$ possesses a weak solution. This result holds for more general equation:

(7) $u_{tt} - u_{xx} + g(u) = f(x, t), \quad (x, t) \in (0, \pi) \times \mathbf{R},$

(8) $u(0, t) = u(\pi, t) = 0, \quad t \in \mathbf{R},$

(9)
$$u(x, t+T) = u(x, t), \qquad (x, t) \in (0, \pi) \times \mathbf{R},$$

where g(s) is a continuous function and f(x, t) is a *T*-periodic function. (We don't assume the monotonicity of g(s) and $T/\pi \in Q$.)

Theorem. Assume that there exist constants $C_1>0$ and $C_2>0$ such that

$$\int_{0}^{s} g(\tau) d\tau \leq C_{1} \cdot sg(s) + C_{2} \quad \text{for all } s \in \mathbf{R},$$
$$\lim_{|s| \to \infty} \frac{g(s)}{s} = \infty.$$

Then for all f(x, t) in a dense subset Ξ of L^2 , (7)–(9) possesses a weak solution (or equivalently the range of the operator: $u \rightarrow u_{tt} - u_{xx} + g(u)$ is dense in L^2).

Remark 2. Using Proposition 3, we can give a simple proof of the result of P. H. Rabinowitz [4] by the dual variational method.

Acknowledgement. The author would like to thank Prof. Haruo Sunouchi for his advice and encouragement.

72

References

- H. Brézis: Periodic solutions of nonlinear vibrating strings and duality principles. Bull. Amer. Math. Soc. (N.S.), 8, 409-426 (1983).
- [2] H. Brézis, J. M. Coron, and L. Nirenberg: Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz. Comm. Pure Appl. Math., 33, 667–689 (1980).
- [3] P. H. Rabinowitz: Multiple critical points of perturbed symmetric functionals. Trans. Amer. Math. Soc., 272, 753-769 (1982).
- [4] ——: Large amplitude time periodic solutions of a semilinear wave equation. Comm. Pure Appl. Math., 37, 189-206 (1984).
- [5] K. Tanaka: Density of the range of a wave operator with nonmonotone superlinear nonlinearity (to appear).
- [6] J. P. Ollivry: Vibrations forcées pour une équation d'onde nonlinéaire. C. R. Acad. Sci. Paris, Sér. I, 297, 29-32 (1983).