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1. Introduction. In this article we shall study the nonlinear wave
equation :

(1): Ivtt_vza;ilvls_lvzf(xy t)’ (x’ t)e(o, 7t)><R,
(2) (0, t)=v(x, £)=0, t R,
(3) v(x, t+21)=v(x, 1), (z,t) € (0, ) X R,

where s>1 is a constant and f(z, t) is a 2z-periodic function of ¢.

Our main result is as follows:

Theorem. Assume that 1<s<1++'2 and f(z,t)eLs, (0, z]1XR)
(g=1/s+1) is a 2z-periodic function of t. Then (1).—(3) possessess an un-
bounded sequence of weak solutions in LG ([0, z]1 X R).

To prove our theorem, we convert the problem to a simpler one by a
Legendre transformation which is used in H. Brézis, J. M. Coron and
L. Nirenberg [2], that is, we use the dual variational formulation for
1).-(8). Next we use a perturbation result of P. H. Rabinowitz [3] as-

serting the existence of infinitely many critical points of perturbed sym-
metric functionals.

After completing this work, the author knew announcement of the
result of J. P. Ollivry [6]. His result is analogous to ours for (1),-(8) but
under the following conditions:

1<s<2 and f(x,t)eFE (see (4).
Our result obviously contains his result. Moreover our growth restriction
1<s<1++/2 coincides with the condition which ensures the existence of
an unbounded sequence of solutions of the semilinear elliptic equation :
—du=|ul-'u+ f(x), xef,
u=0, xedf,
where 2C R? is a smooth bounded domain (see P. H. Rabinowitz [3]).

2. Outline of the proof of Theorem. We shall only give outline of
proof. Details will be published elsewhere.

We shall deal with the case (1),-(38) (the argument is essentially the
same for the case (1).-(3)).

Let 2=(0, =) X (0, 2x).

We shall consider the operator Au=wu,,—u,, acting on functions in
L'(9) satisfying (2), (8). Denote by N the kernel of A. Consider the space

(4) ={ueL‘1(9);L ug=0 for all ¢eNﬂL”‘(9)}
with L? norm |- ||,.
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For any u ¢ E there exists a unique Ku € C*(2)NE with a=1-1/¢
such that A(Ku)=u. The operator K: E—E* is compact.

For a given f € LU(£2) we define the functional I(x) € C'(E, R) by

I(w)=—Q@1/2)(—Ku, w+Q/Q) ||u— S}
where (-, -) denotes the duality product between E* and E. There is one-
to-one correspondence between the critical points of I(u) and the weak
solutions of (1),-(8). This is so-called dual variational formulation of the
problem (1).~(3).

For technical reasons, we shall replace I(x) by a modified functional
J(u) € C'(E, R) defined by

Jw)=—Q1/2)(—Ku, w)+1/q) || |2
+Q/@ Y@ - (u—fllg—lul),
where () will be defined analogously as in P. H. Rabinowitz [3].
Then we have the following propositions.
Proposition 1. There is a constant f=p4(| f|,)>0 such that for ue E,
[Jw) —J(—w) |<B-(J () [(4~P/74-1).
Proposition 2. There is a constant M=M(| f|,)>0 such that
(i) J(u) e C'(E, BR) satisfies Palais-Smale condition on
Ay={ueE; J(w>M}.

(i) Jw)>M and J'(u)=0 imply that I(w)=J(w) and I’'(w)=0.

Note that K is a compact self-adjoint operator in ENL*2). Its eigen-
values are {1/(j*—Fk*) ; jk}. We rearrange the eigenvalues in the follow-
ing order, denoted by

= =y — < e <0< Ly <y <y
with repetitions according to the multiplicity of each eigenvalue and denote
by e, and f; the eigenfunctions which are corresponding to —y, and v,
respectively. We assume moreover | ¢,|,=|f;ll,=1 for allj e N. Nextwe
shall define the spaces E,, E} by
E,=span{e, e, - -, ¢,},
Eir={ueck; (e,w=0 for i=1,2, - .., n}.
Proposition 3. There are constants a,>0 such that
(—Ku, w<a,-||u|} for all ue EL.
Moreover for any 6>0 there exists a constant C,>0 such that
a,<Cs -n-Ha-D/a+s for all ne N.
Clearly there is a sequence of numbers: 0<R,<R,< .- such that
Jw)<0 for all w e E, with ||u||,>R,.
Let By={ueF; |u|,<R}and D,=B, NE,. Set

I'y={heC(D,, E); h is odd and h(w)=u if |u|,=R,}.
Define

b,=1inf sup J(h(w)) for » e N.

h€ln €Dy
Using the Borsuk-Ulam theorem and Proposition 3, we have
Proposition 4. For every §>>0 there is a constant C;>0 such that
(5) b,>C; -n¥e-v/¢-0-3 for all me N.
Let
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U,=u=t-e,.,+w;tel0,R,,], weBg,, NE, and ||u|,<R,.,}.
A,={H eC(U,, E); Hlp, e I'y Hw) =2 if | u]l,=R,.,
or u € (Bg,,,\Bz)NE.,}.
Define
¢,=inf sup J(H(w)) for n e N.

HeAn u€Un

P. H. Rabinowitz [3] proved the following perturbation result.

Proposition 5. Assumethat ¢,>b,>M. Then J(u) possesses a critical
value in [c,, o).

Hence to prove our theorem, it suffices to show that ¢,=b, is not pos-
sible for all large n. We have the following :

Proposition 6. If ¢,=b, for all n>n,, there exists a constant ¥ =7(n,)
such that
(6) b, <r-n? for all n e N.

Thus comparing (5) and (6), we see the inequalities are incompatible if

V2<q<2, e, 1<s<14++/2.
Hence there is a sequence {u,};., of critical points of I(x) such that
I(u,)—o0 as n—oo,
So there exists the sequence of solutions {v,};., of (1),—(8) corresponding
to u, satisfying
|Vnlls+1—>00 as n—oo,

3. Remarks.

Remark 1. K. Tanaka [5] proved for all se (1, o) there is a dense
set of f e L) for which (1),-(3) possesses a weak solution. This result
holds for more general equation :

(7) utt_uzw+g(u)=f(x’ t), (x’ t)e(o, ”)XR’
(8) (0, t)=wu(r, t)=0, teR,
(9) u(x, t+T)=u(z, 1), (x,t) € (0, 7) XR,

where g(s) is a continuous function and f(x,t) is a T-periodic function.
(We don’t assume the monotonicity of g(s) and T/r € Q.)

Theorem. Assume that there exist constants C,>0 and C,>0 such
that

J: g(0)dr<C,-s9(s)+C, for all se R,

lim g—(sl=-oo.
Is]—=e 8

Then for all f(x,t) in a dense subset 5 of L?, (71)-(9) possesses a weak solu-
tion (or equivalently the range of the operator: u—u,,—u,.+9g@) is dense
in L?).
Remark 2. Using Proposition 3, we can give a simple proof of the
result of P. H. Rabinowitz [4] by the dual variational method.
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