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Introduction. Let M be an n-dimensional complex projective mani-
fold. A finite branched covering of M is, by definition, a proper finite
holomorphic mapping " X-M of an irreducible normal complex space X
onto M. The ramification locus R--{x e Xl*:g.--*g. is not iso-
morphic) o.f and the branch locus B--(R) of are hypersurfaces of X
and M, respectively. For a point x e -(B), if y--(x) is a non-singular
point of B, then x is a non-singular point of both X and -(B). In this
case, there are coordinate systems (z,..., z) and (w,..., w) around x
and y, respectively, such that is locally given by

: (z, ..., z). (w, ..., w)=(z, ..., z_, z).
The. positive, integer e is then locally constant with respect to x. Hence,
to every irreducible component D’ of z-X(B), a positive integer e=e, is
associated and is called the ramification index of at D’. A covering

transformation of is an automorphism of X such that =z. We denote
by G the group of all covering transformations. = is said to be Galois if

G acts transitively on every fiber o . z is said to be abelian if z is Galois
and G is an abelian group.

Let D, ..., D be irreducible hypersurfaces of M. Put B=D J U
D. Let e,, ..., e be positive integers greater than 1. Consider the posi-
tire divisor D=eD+...+e,D. A finite branched covering z" X--M is
said to branch at D (resp. at at most D) if B=B (resp. BcB) and, for every
] (l<]<s), and for any irreducible component D’ o.f z-(D), the ramifica-
tion index o z at D’ is e (resp. divides e).

The purpose of this note is (1) to give a criterion or the existence of
a finite Galois (resp. abelian) covering of M which branches at D and (2)
to describe the. set of all (isomorphism classes of) finite Galois (resp. abelian)
coverings of M which branch at at most D. We follow the idea of Weil
[4].

The detail will be given in Namba [2].
1. Abelian coverings. Let M and D be as above. Consider the ad-

ditive group
Div (M, D) { (a /e)D+... + (a / e)D +E’ a e Z

for l<]<s, E’ is an (integral) divisor}
of rational divisors on M. E, E e Div (M, D) are said to be linearly equiv-
alent, EE, if E--E is a principal integral divisor on M. Let
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c" Hi(M, (*)--HI’(M, Z) be the map of Chern class and ].’H,(M, Z)-+
H’(M, Q)be the homomorphism induced by the inclusion ]" ZcQ. Con-
sider the subgroup

Div0 (M, D) {/ (a/el)D +... +(a/e)D+E’ e Div (M, D) c(/)
(a/e)].c([D]) +... + (a/e)].c([D])+].c([E’])

=0 e HI’(M, Q)}
of Div (M, D).

Theorem 1. There is a bi]ective map S=S(u) of the set of all
(isomorphism classes of) finite abelian coverings " X--+M which branch
at at most D, onto the set of all finite subgroups S of Div0 (M, D)/. The
map satisfies (1) G_S(=) and (2) if um., then S()S(2).

Theorem 2. There is a finite abelian covering " X--M which
branches at D if and only if there is a finite subgroup S of Div0
with the following condition" for every ] (l]s), there is
=((al/e,)D+...--(a/e)Dq-E’)/ e S such that (a, e)=l (coprime).

2. Galois coverings. Let M and D be as above. Put
M’=M--Sing B, D.=D-- Sing B for l<]<s

and D’=eD+... +e,D. Let {W.}.e [5 {W}e be an open covering of M
such that B f W.= for c e A and B (3 W :/: or , e N. An. (r r)-matrix
D’-divisor/ {F.} J {F} is a collection of (r r)-matrix valued meromorphic
functions F. on W. and F o. (w, ..., Wn-, ,/-.), where (w, ..., w) is a
coordinate system on W such that B( W=D(3 W={w=0} (say), (e=e),
with the following conditions" (1) det (F.) and det (F) are not identically
zero, (2) F.F7 etc. are. holomorphic functions with never vanishing
det (F.F;) and (3) for any , e N,

S(w, w_, ,/-,)=F(w, w_, _,/-n)F(Wl, w /-,)_1
is a holomorphic function with never vanishing det(S), where
exp 2v---/e. Then the collection

-1(F.F;1}.,e U (F.F:}.e,e U (FF:} {F,F
has a vector bundle like property (though F,F7 is a holomorphic function
of (w...., Wn-. /-)). We denote this collection by [/] and call it the
D’-vector bundle (of rank r) associated with . In a similar way, we can
define generally a D’-vector bundle (of rank r).

Definition 1. A D’-vector bundle V is said to be unitary fiat if there
are a matrix D’-divisor/ and a matrix meromorphic 1-form 2 on M with
the ollowing conditions" (1) V=[], (2) /]/---(d/)/- is holomorphic,
(3) d]+]/]-- 0 and (4) the period representation R," u(M--B, po)-GL(r, C)
(P0" a fixed point) is equivalent to a unitary representation, where

R,(’) =[_ r] for " e I(M--B, P0),

is the analytic continuation along " of the solution ot the differential equa-
tion dZ=Z with the initial condition Z(p0)= 1.

Note that, if B is empty, a unitary flat D’-vector bundle is nothing but
a (usual) unitary flat vector bundle.
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Let UFV(M’, D’, r) be the set of all (isomorphism classes of) unitary
flat D’-vector bundles of rank r. The disjoint union

UFV(M’, D’) Uo= UFV(M’, D’, r)
orms an associative, distributive, commutative, symmetric algebraic
system (called a Tannaka system) with respect to direct.sum, tensor product
and the ,-operation, where .: V V-’. An element V o.f UFV(M’, D’) is
said to be irreducible if V can not be written as a direct sum of two ele-
ments of UFV(M’, D’). Every element V of UFV(M’, D’) can be uniquely
written as a direct sum V V. Vt of irreducible elements V (1 <k < t),
which are called irreducible components of V. A subsystem S of
UFV(M’, D’) is called a module of UFV(M’, D’) if, for any V e S, every ir-
reducible component of V also belongs to S. A representation of a
module S is a map

V e S--->(V)e U(r) (the unitary group with r-rank (V)),
which is (quasi-)compatible with direct sum, tensor product and the ,-

operation, (see Tannaka [3]). The set G(S) of all representations of S
forms a group in a natural way.

Definition 2. A module S is said to be finite if (1) S is generated by
finite elements and (2) G(S) is a finite group.

Theorem 3. There is a bi]ective map rS=S(r) of the set of all (iso-
morphism classes of) finite Galois coverings : X--+M which branch at
at most D, onto the set of all finite modules S of UFV(M’, D’). The map

satisfies (1) G_G(S(:)) and (2) if r1<2, then S(rl)cS(m.).
Theorem 4. There is a finite Galois covering X---M which branches

at D if and only if there is a finite module S of UFV(M’, D’) with the fol-
lowing condition" for every ] (1 <] <s), there is V= V(]) e S such that there
are a matrix D’-divisor ff with V=[/] and a matrix meromorphic 1-form
on M, which satisfy the conditions in Definition 1 and such that R,(rj)

has the order ej, where ’ is a closed curve in. M--B which rounds D once
counterclockwisely.

3. Kato’s theorem. Theorem 4 is not easy to handle. Recently,
Kato [1] obtained a nice sufficient condition in a special case:

Theorem (Kato). Let D (l<]<s) be lines on P2. Put
/ {p e B=D U U D m(B)>3}.

(rap(B) is the multiplicity of B at p.) Suppose that D/4=b for every ].
Then, for any integers el,..., e greater than 1, there is a finite Galois
covering r" X--+P which branches at D--eIDt+... +esD.

We can generalize this theorem as follows"
Theorem 5. Let M be a projective manifold of dimension greater

than 1. Let DI, ..., D be irreducible hypersurfaces of M and /, .., /t
be fixed component free linear pencils of M. Suppose (1) every Dj is a

member of some / and (2) every / contains at least 3 D’s. Then, for
any integers el,..., e greater than 1, there is a finite Galois covering r"

X-+M which branches at D=eDI+... +e,D,.
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