33. On Branched Coverings of Projective Manifolds

By Makoto NAMBA

Department of Mathematics, Faculty of Science, Tohoku University

(Communicated by Kunihiko KODAIRA, M. J. A., April 12, 1985)

Introduction. Let M be an *n*-dimensional complex projective manifold. A finite branched covering of M is, by definition, a proper finite holomorphic mapping $\pi: X \to M$ of an irreducible normal complex space Xonto M. The ramification locus $R_{\pi} = \{x \in X \mid \pi^* : \mathcal{O}_{M,\pi(x)} \to \mathcal{O}_{X,x} \text{ is not iso$ $morphic}\}$ of π and the branch locus $B_{\pi} = \pi(R_{\pi})$ of π are hypersurfaces of Xand M, respectively. For a point $x \in \pi^{-1}(B_{\pi})$, if $y = \pi(x)$ is a non-singular point of B_{π} , then x is a non-singular point of both X and $\pi^{-1}(B_{\pi})$. In this case, there are coordinate systems (z_1, \dots, z_n) and (w_1, \dots, w_n) around xand y, respectively, such that π is locally given by

 $\pi: (z_1, \cdots, z_n) \longmapsto (w_1, \cdots, w_n) = (z_1, \cdots, z_{n-1}, z_n^e).$

The positive integer e is then locally constant with respect to x. Hence, to every irreducible component D' of $\pi^{-1}(B_{\pi})$, a positive integer $e=e_{D'}$ is associated and is called the *ramification index of* π *at* D'. A covering transformation of π is an automorphism φ of X such that $\pi \varphi = \pi$. We denote by G_{π} the group of all covering transformations. π is said to be *Galois* if G_{π} acts transitively on every fiber of π . π is said to be *abelian* if π is Galois and G_{π} is an abelian group.

Let D_1, \dots, D_s be irreducible hypersurfaces of M. Put $B = D_1 \cup \dots \cup D_s$. Let e_1, \dots, e_s be positive integers greater than 1. Consider the positive divisor $D = e_1D_1 + \dots + e_sD_s$. A finite branched covering $\pi: X \to M$ is said to branch at D (resp. at at most D) if $B_{\pi} = B$ (resp. $B_{\pi} \subset B$) and, for every j ($1 \leq j \leq s$), and for any irreducible component D' of $\pi^{-1}(D_j)$, the ramification index of π at D' is e_j (resp. divides e_j).

The purpose of this note is (1) to give a criterion for the existence of a finite Galois (resp. abelian) covering of M which branches at D and (2) to describe the set of all (isomorphism classes of) finite Galois (resp. abelian) coverings of M which branch at at most D. We follow the idea of Weil [4].

The detail will be given in Namba [2].

1. Abelian coverings. Let M and D be as above. Consider the additive group

Div $(M, D) = \{ \hat{E} = (a_1/e_1)D_1 + \cdots + (a_s/e_s)D_s + E' | a_j \in \mathbb{Z} \}$

for $1 \leq j \leq s$, E' is an (integral) divisor}

of rational divisors on M. $E_1, E_2 \in \text{Div}(M, D)$ are said to be *linearly equiv*alent, $E_1 \sim E_2$, if $E_1 - E_2$ is a principal integral divisor on M. Let $c: H^{1}(M, \mathcal{O}^{*}) \rightarrow H^{1,1}(M, \mathbb{Z})$ be the map of Chern class and $j_{*}: H^{1,1}(M, \mathbb{Z}) \rightarrow H^{1,1}(M, \mathbb{Q})$ be the homomorphism induced by the inclusion $j: \mathbb{Z} \subset \mathbb{Q}$. Consider the subgroup

$$\begin{aligned} \operatorname{Div}_{0}^{\boldsymbol{q}}(M,D) = & \{ \hat{E} = (a_{1}/e_{1})D_{1} + \dots + (a_{s}/e_{s})D_{s} + E' \in \operatorname{Div}(M,D) \mid c^{\boldsymbol{q}}(\hat{E}) \\ = & (a_{1}/e_{1})j_{*}c([D_{1}]) + \dots + (a_{s}/e_{s})j_{*}c([D_{s}]) + j_{*}c([E']) \\ = & 0 \in H^{1,1}(M,\boldsymbol{Q}) \end{aligned}$$

of Div(M, D).

Theorem 1. There is a bijective map $\pi \mapsto S = S(\pi)$ of the set of all (isomorphism classes of) finite abelian coverings $\pi: X \to M$ which branch at at most D, onto the set of all finite subgroups S of $\text{Div}_0^Q(M, D) / \sim$. The map satisfies (1) $G_{\pi} \simeq S(\pi)$ and (2) if $\pi_1 \leqslant \pi_2$, then $S(\pi_1) \subset S(\pi_2)$.

Theorem 2. There is a finite abelian covering $\pi: X \to M$ which branches at D if and only if there is a finite subgroup S of $\text{Div}_0^{\mathbf{q}}(M, D)/\sim$ with the following condition: for every j $(1 \leq j \leq s)$, there is $\hat{E}/\sim =\hat{E}(j)/\sim$ $=((a_1/e_1)D_1+\cdots+(a_s/e_s)D_s+E')/\sim \in S$ such that $(a_j, e_j)=1$ (coprime).

2. Galois coverings. Let M and D be as above. Put

 $M' = M - \operatorname{Sing} B, D'_j = D_j - \operatorname{Sing} B$ for $1 \leq j \leq s$

and $D' = e_1 D'_1 + \dots + e_s D'_s$. Let $\{W_{\alpha}\}_{\alpha \in A} \cup \{W_{\nu}\}_{\nu \in N}$ be an open covering of M such that $B \cap W_{\alpha} = \phi$ for $\alpha \in A$ and $B \cap W_{\nu} \neq \phi$ for $\nu \in N$. An $(r \times r)$ -matrix D'-divisor $\hat{E} = \{F_{\alpha}\} \cup \{F_{\nu}\}$ is a collection of $(r \times r)$ -matrix valued meromorphic functions F_{α} on W_{α} and F_{ν} of $(w_1, \dots, w_{n-1}, e_{\sqrt{w_n}})$, where (w_1, \dots, w_n) is a coordinate system on W_{ν} such that $B \cap W_{\nu} = D_1 \cap W_{\nu} = \{w_n = 0\}$ (say), $(e = e_1)$, with the following conditions: (1) det (F_{α}) and det (F_{ν}) are not identically zero, (2) $F_{\alpha}F_{\beta}^{-1}$ etc. are holomorphic functions with never vanishing det $(F_{\alpha}F_{\beta}^{-1})$ and (3) for any $\nu \in N$,

 $S_{\nu}(w_1, \dots, w_{n-1}, e^{-1}\sqrt{w_n}) = F_{\nu}(w_1, \dots, w_{n-1}, \zeta^e \sqrt{w_n}) F_{\nu}(w_1, \dots, w_{n-1}, e^{-1}\sqrt{w_n})^{-1}$ is a holomorphic function with never vanishing det (S_{ν}) , where $\zeta = \exp 2\pi\sqrt{-1}/e$. Then the collection

 $\{F_{\alpha}F_{\beta}^{-1}\}_{\alpha,\beta\in A}\cup\{F_{\alpha}F_{\nu}^{-1}\}_{\alpha\in A,\nu\in N}\cup\{F_{\nu}F_{\alpha}^{-1}\}\cup\{F_{\mu}F_{\nu}^{-1}\}_{\mu,\nu\in N}$

has a vector bundle like property (though $F_{\mu}F_{\nu}^{-1}$ is a holomorphic function of $(w_1, \dots, w_{n-1}, \sqrt[e]{w_n})$). We denote this collection by $[\hat{E}]$ and call it the *D'-vector bundle* (of rank r) associated with \hat{E} . In a similar way, we can define generally a *D'-vector bundle* (of rank r).

Definition 1. A D'-vector bundle V is said to be unitary flat if there are a matrix D'-divisor \hat{E} and a matrix meromorphic 1-form η on M with the following conditions: (1) $V = [\hat{E}]$, (2) $\hat{E}\eta\hat{E}^{-1} - (d\hat{E})\hat{E}^{-1}$ is holomorphic, (3) $d\eta + \eta \wedge \eta = 0$ and (4) the period representation $R_{\eta}: \pi_1(M-B, p_0) \rightarrow GL(r, C)$ $(p_0:$ a fixed point) is equivalent to a unitary representation, where

$$R_{\eta}(\tilde{r}) = \int_{r} \eta \quad \text{for } \tilde{r} \in \pi_{1}(M - B, p_{0}),$$

is the analytic continuation along r of the solution of the differential equation $dZ = Z\eta$ with the initial condition $Z(p_0) = 1$.

Note that, if B is empty, a unitary flat D'-vector bundle is nothing but a (usual) unitary flat vector bundle.

Let UFV(M', D', r) be the set of all (isomorphism classes of) unitary flat D'-vector bundles of rank r. The disjoint union

 $UFV(M', D') = \bigcup_{r=1}^{\infty} UFV(M', D', r)$

forms an associative, distributive, commutative, symmetric algebraic system (called a *Tannaka system*) with respect to direct sum, tensor product and the *-operation, where $*: V \mapsto^i V^{-1}$. An element V of UFV(M', D') is said to be *irreducible* if V can not be written as a direct sum of two elements of UFV(M', D'). Every element V of UFV(M', D') can be uniquely written as a direct sum $V = V_1 \oplus \cdots \oplus V_t$ of irreducible elements V_k $(1 \le k \le t)$, which are called *irreducible components of* V. A subsystem S of UFV(M', D') is called a module of UFV(M', D') if, for any $V \in S$, every irreducible component of V also belongs to S. A *representation* Ψ of a module S is a map

 $V \in S \mapsto \Psi(V) \in U(r)$ (the unitary group with $r = \operatorname{rank}(V)$), which is (quasi-)compatible with direct sum, tensor product and the *operation, (see Tannaka [3]). The set G(S) of all representations of S forms a group in a natural way.

Definition 2. A module S is said to be *finite* if (1) S is generated by finite elements and (2) G(S) is a finite group.

Theorem 3. There is a bijective map $\pi \mapsto S = S(\pi)$ of the set of all (isomorphism classes of) finite Galois coverings $\pi: X \to M$ which branch at at most D, onto the set of all finite modules S of UFV(M', D'). The map satisfies (1) $G_{\pi} \simeq G(S(\pi))$ and (2) if $\pi_1 \leq \pi_2$, then $S(\pi_1) \subset S(\pi_2)$.

Theorem 4. There is a finite Galois covering $\pi: X \to M$ which branches at D if and only if there is a finite module S of UFV(M', D') with the following condition: for every j $(1 \le j \le s)$, there is $V = V(j) \in S$ such that there are a matrix D'-divisor \hat{E} with $V = [\hat{E}]$ and a matrix meromorphic 1-form η on M, which satisfy the conditions in Definition 1 and such that $R_{\eta}(\gamma_j)$ has the order e_j , where γ_j is a closed curve in M-B which rounds D'_j once counterclockwisely.

3. Kato's theorem. Theorem 4 is not easy to handle. Recently, Kato [1] obtained a nice sufficient condition in a special case:

Theorem (Kato). Let D_j $(1 \le j \le s)$ be lines on P^2 . Put

 $\triangle = \{ p \in B = D_1 \cup \cdots \cup D_s \mid m_p(B) \ge 3 \}.$

 $(m_p(B) \text{ is the multiplicity of } B \text{ at } p.)$ Suppose that $D_j \cap \triangle \neq \phi$ for every j. Then, for any integers e_1, \dots, e_s greater than 1, there is a finite Galois covering $\pi: X \rightarrow \mathbf{P}^2$ which branches at $D = e_1D_1 + \dots + e_sD_s$.

We can generalize this theorem as follows:

Theorem 5. Let M be a projective manifold of dimension greater than 1. Let D_1, \dots, D_s be irreducible hypersurfaces of M and $\wedge_1, \dots, \wedge_t$ be fixed component free linear pencils of M. Suppose (1) every D_j is a member of some \wedge_k and (2) every \wedge_k contains at least 3 D_j 's. Then, for any integers e_1, \dots, e_s greater than 1, there is a finite Galois covering π : $X \rightarrow M$ which branches at $D = e_1D_1 + \dots + e_sD_s$.

No. 4]

M. NAMBA

References

- Mi. Kato: On the existence of finite principal uniformizations of CP³ along weighted line configurations. Mem. Fac. Sci. Kyushu Univ., 38, 127-131 (1984).
- [2] M. Namba: Lectures on branched coverings and algebraic functions (to appear).
- [3] T. Tannaka: Über den Dualitätssatz der nicht-kommutativen topologischen Gruppen. Tohoku Math., 45, 1-12 (1938).
- [4] A. Weil: Généralisation des fonctions abéliennes. J. de Liouville, 17, 47-87 (1938).