
108 W.B. VASANTHA [Vol. 61 (A),

R such that (-1)/=1. Thus we would have =(--)/e (-)R but
(--)RR because , and hence (c-l)=--c is not a unit. Thus c
would not be semi-idempotent.

Proposition ;. Let R=KG be a group ring over an abelian group G.
If R is not a zero-divisor and -1 is not a unit in R hen is semi-
idempotent.

Proof. Suppose c be not semi-idempotent. Then (c2--c0R is a proper
ideal of R and c e (-)R. Thus there is an element/ R such that c--

(c--c)=c(--l)/. As c is not a zero-divisor, we would have 1=(--1)/,
which would mean that --1 is a unit in R.

Note. It is obvious that elements of R--KG of the form kg, k (=/=0)
e K, g e G are units of R. They are called trivial units, other units non-
trivial. It was proved in Passman [2] Chapter 13 that if G is a torsion
free abelian group (actually G can be a group of more general type), R-KG
has no proper zero-divisors and all units of R are trivial. Using this, we
obtain the following theorem, which is the main result of this paper.

Theorem. Let R=KG be the gro.up ring over a torsion free abelian
group G. Let =/=0 be an element of R which is not a unit. Then. is
semi-idempotent if and only if -1 is not a trivial unit.

Proof. The only-if-part follows from Proposition 4 and the if-part
from Proposition 5 and Passman’s result.

Remark. The following problems remain open but seem difficult to
solve.

(1) Can Proposition 5 be extended into the form" Let K be a field
and R=KG the group ring over any group G. If c-I is not a unit in R,
then a is semi-idempotent?

(2) Can our Theorem be extended into the form" Let K be a field
and R-KG the group ring over any torsion free group G, and suppose
a (=/=0) e R and that c is not a unit. Then a is semi-idempotent if and only
if c--1 is not of the form kg, l e K, g e G ?
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Corrigenda to my former paper in Proc. Japan Acad, 60A, 333-334 (1984).
p. 333 line 11 from bottom, add "or" between "1<i" and "1<".
p. 334 line 7 from above, add "p>_" before "k_>2".
p. 334 line. 10 from bottom, read "e=a.1, a=ae R" instead of "e=0 or e=l".
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