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1. Introduction. In [2], the author investigated self-similar sets,
including classical singular curves like Peano’s and Koch’s, as the in-
variant sets under several contraction mappings.

In this paper, we shall treat such a peculiar set as the fixed point of
a certain set-dynamical system.

Let X be a complete metric space with a metric d. The power set 2%
of all subsets of X forms a partially ordered set under set-inclusion in a
natural way, that is, <y means x is a subset of y. Moreover, 2% is a
complete lattice with operations join “+4” (set-union) and meet . ” (set-
intersection). Let C(X) be a subcollection of 2% of all non-empty compact
subsets of X, which is itself a partially ordered set under the same inclu-
sion relation. Since C(X) 2 ¢ (empty set), C(X) is not a lattice but a join-
semilattice with the binary relation “-4-”.

It is known that C(X) is a complete metric space equipped with the
Hausdorff metric:

dy(x, y)=max (inf {¢>0, N .()>y}, inf {¢>0, N.(y)>2})
where N.(x) € 2% is an e-neighbourhood of the set . Moreover, if X is
compact, C(X) becomes also a compact metric space [4]. Note that the
mapping ¢: X—C(X), which maps p into {p}, is an isometry.

2. Induced mappings. A mapping F:C(X)—C(X) is said to be
order-preserving provided that xz<y implies F(x)<F(y); a join-endo-
morphism provided that F(z+y)=F(x)+F(y) for all z,ye C(X). Let &
consist of all continuous, order-preserving join-endomorphisms defined on
C(X); and let FF<G mean that F(x)<G(x) for every x € C(X). Then &
becomes a join-semilattice with operation “+”, that is, (F+4 G)(x) means
F(x)+ G(x) for every x € C(X).

Now let f: X—X be a continuous mapping. Since the image of
2 € C(X) under f is plainly compact, we can define the induced mapping
S*: C(X)—C(X) in a natural way. Note that (fog)*=sf*0g* for any con-
tinuous self-mappings f,g. It is obvious that any induced mapping is
contained in <.

A self-mapping h defined on a metric space (¥, ¢) is said to satisfy the
condition + provided that

o(h(x), k() <V (©(x,y))  for every z,ycE,
where +(f) is a non-decreasing right-continuous real-valued function
defined on [0, o) satisfying ¢(0)=0. Then we have:
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Proposition 1. Suppose that f: X—X satisfies the condition . Then
the induced mapping f*: C(X)—C(X) also satisfies the same condition .

Proof. It is easily seen that N, (f(x))> f(IV,(x)) for all z € C(X) and
6>0. Put s=dg(x, y) for brevity. Then for any ¢>0, we have y<N,, (%)
and therefore f(#) <N, (X)) <Ny 6(f(@)). Similarly f(2) <Ny .o (f@)).
Thus, by definition, d,(f*(x), f*()<y(s+¢). Taking e—0-+, we get the
required inequality. O

Proposition 2. Suppose that the induced mapping fF satisfies the
condition ¥, for 1<j<m. Thenthemapping F=f¥+ ...+ f* e J satisfies
the condition J(t)=max, y,(t).

The proof is straightforward.

A mapping satisfying the condition +», where ¥(£)<t for any ¢>0, is
called a +-contraction. Suppose now that f,, -- -, f,, are all y»-contractions
on X. Then, by Propositions 1 and 2, the mapping F=f¥+..--+f¥is a
J-contraction on C(X). Therefore F' has a unique fixed point K in C(X),
in other words, K is a unique non-empty compact subset of X satisfying
the equality K=f(K)+ - - - +f.(K). This gives fairly simple another proof
for the existence and uniqueness of the invariant set under several con-
tractions discussed in [2].

3. Regular mappings. Given a mapping F € ¥, we will associate
two mappings Ly, R, : C(X)—2% as follows:

L.(x)=lim sup F*(x) and R(x)=closure of > F"(x).

N—00 n=0
A mapping F is said to be regular provided yhat R;(2) e C(X) for every
2 e C(X). Note that R,(x) € C(X) implies Ly(x) € C(X). If the space X is
compact, every F' ¢ ¢ must be regular.
Proposition 3. Ewvery {-contraction F € F is regular. Moreover, Ry
belongs to F and satisfies the condition y(t)=*t.
Proof. Put z,=F"(x) for brevity. For any ¢>0, define a sufficiently
large integer N such that " (dz(x,, 2))<e—1(c). Since
Au(@y, Ty <PV (d g (2, x,) <e—(e),
we have inductively
Au(@yy Ty o) <Au(@wy Ty i)+ Au(Ty sy Ly i) Le— (&) +V(@u(@w, Twir-))<e
for any k>1. (This means that {x,} is a Cauchy sequence.) Let 7(x), the
measure of noncompactness of x [3], be inf{¢>0; x can be covered by a
finite number of sets of diameter less than or equal to ¢}. Then,
T(ﬂZ20 x) <7 (ngv %) TN (23)) <7V (xy) +2e=2e.

Since ¢ is arbitrary, this implies that the set > ,.,«, is pre-compact.
Finally, it is easily seen that
d(Rz(x), Rp(y)) <sup dx(F"(x), F"(y)=du(x, ¥). O

4. Inhomogeneous equations. Under these preparations, we will
give our main theorems.

Theorem 1. Suppose that F € G is a -contraction. Then the follow-
ing inhomogeneous equation:
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r=F(x)+v,
has a unique solution x=R,(v) for every (fixed) v € C(X). Moreover, R (v)
=K, if and only if v<K,, where K, is a unique fixed point of F, in other
words, R7'(Ky) is a principal ideal of C(X).

Proof. Obviously R, (v) satisfies the equation considered. The con-
stant mapping c(x)=wv satisfies the condition y,=0 and therefore G=F+¢
is a y-contraction by Proposition 2. This yields the uniqueness of the solu-
tion. This implies that R,(v)=K, if v<K,. The converse is trivial. O

By the above theorem, the operator R, can be regarded as the resolvent
(Id—F)-1.

Theorem 2 (Alternative of Fredholm). Suppose that F' € & is regular.
Then the following statements (a) and (b) are equivalent :

(a) there exists a unique solution of x=F(x)+v for every v € C(X);

(b) F has a unique fixed point K.

Proof. It suffices to show (a) assuming (b). Suppose, on the contrary,
that there are two distinet solutions u, w for some v € C(X). (Note that
the equation has at least one solution since F' is regular.) From (b), it
follows u-w=¢. Without loss of generality, we can assume z=closure of
u—u-w+¢. Thenu-w>K, since u-w>F(w)-F(w)>F(u-w). We now show
F(z)>2. For otherwise, there exists a point p € u—u.-w such that p ¢ F(z).
Thus, p ¢ F2)+F(u-w)+v=Fu)+v=u, contrary to peu. Since F(z)>z
and u>z, F*(u)>z for any n>0. Hence K;>2>u—u-w and this contra-
diction completes the proof. |

Concerning fixed points of F', we have:

Theorem 3. If Ry(x) € C(X), then Ly(x) is a fixed point of F'.

Corollary. Suppose that F € @ is regular and that F has a unique
fixed point K,. Then limsup F*(x)=K, for every x € C(X).

n—co

Before proving the theorem, we need:

Lemma. Let FeSG and x e C(X). For any qe F(x), there exists at
least one point p € x such that q € F({p}).

Proof. For any ¢>0, z can be represented as a finite sum > 7, x, such
that z,e C(X) and diam (z,)<e. Since F(x)=>7.,F(x,), there exists z,
satisfying q € F'(z,). Continuing in this way, we find a sequence x>y,>v,
> ... such that diam (y,)<2-" and q € F(y,). Let p=lim,_..y,€«. Since
Y,—{p} (n—o0) in C(X), we have F(y,)—F({p}) (n—o0) by the continuity of
F. Hence q € F({p}). O

Proof of Theorem 3. Put Q=Lz(x) € C(X) for brevity. We first show
F(@Q>Q. For any pe@Q, there exists a sequence {g,}<X such that
q, € F™(x) and ¢,—»p (n—o0) in X. By Lemma, there exists », € F™-!(x)
satisfying q, € F({r,}). Since r, € Rz(x), without loss of generality, we can
assume that 7,—r* € Q (n—>o0) in X. Therefore {r,}—>{r*} (n—o0) in C(X)
and we get F({r,Hh—F({r*}). Hence p e F({r*}))<F(Q).

We next show the converse inequality FI(Q)<®Q. Let {g,} be the same
sequence in X as above. Since F({g,}) <F™+*!(z) and F({g.h)—F({p}) (n—o0)
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in C(X), we get F({p})<Q. For any >0, there exists §, >0 such that F'(V,)
<N.(F({p}) where N,=closure of N, ({p})-Q € C(X). Since {N;,({pD},cq 18
an open covering of Q, there exist p,, - - -, p, € Q such that Q<> 7.\ N,.
Therefore

F@Q<E FN,)< 3 NF@)<NLQ.

Since ¢ is arbitrary, we have F(Q)<@. This completes the proof. O
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