26. On Some Properties of Set-dynamical Systems

By Masayoshi Hata
Department of Mathematics, Kyoto University
(Communicated by Kôsaku Yosida, M. J. A., April 12, 1985)

1. Introduction. In [2], the author investigated self-similar sets, including classical singular curves like Peano's and Koch's, as the invariant sets under several contraction mappings.

In this paper, we shall treat such a peculiar set as the fixed point of a certain set-dynamical system.

Let X be a complete metric space with a metric d. The power set 2^{x} of all subsets of X forms a partially ordered set under set-inclusion in a natural way, that is, $x \leq y$ means x is a subset of y. Moreover, 2^{x} is a complete lattice with operations join "+" (set-union) and meet ". " (setintersection). Let $C(X)$ be a subcollection of 2^{x} of all non-empty compact subsets of X, which is itself a partially ordered set under the same inclusion relation. Since $C(X) \nexists \phi$ (empty set), $C(X)$ is not a lattice but a joinsemilattice with the binary relation " + ".

It is known that $C(X)$ is a complete metric space equipped with the Hausdorff metric:

$$
d_{H}(x, y)=\max \left(\inf \left\{\varepsilon>0, N_{\varepsilon}(x) \geq y\right\}, \inf \left\{\varepsilon>0, N_{\varepsilon}(y) \geq x\right\}\right)
$$

where $N_{\varepsilon}(x) \in 2^{x}$ is an ε-neighbourhood of the set x. Moreover, if X is compact, $C(X)$ becomes also a compact metric space [4]. Note that the mapping $i: X \rightarrow C(X)$, which maps p into $\{p\}$, is an isometry.
2. Induced mappings. A mapping $F: C(X) \rightarrow C(X)$ is said to be order-preserving provided that $x \leq y$ implies $F(x) \leq F(y)$; a join-endomorphism provided that $F(x+y)=F(x)+F(y)$ for all $x, y \in C(X)$. Let Ir consist of all continuous, order-preserving join-endomorphisms defined on $C(X)$; and let $F \leq G$ mean that $F(x) \leq G(x)$ for every $x \in C(X)$. Then \mathscr{P} becomes a join-semilattice with operation " + ", that is, $(F+G)(x)$ means $F(x)+G(x)$ for every $x \in C(X)$.

Now let $f: X \rightarrow X$ be a continuous mapping. Since the image of $x \in C(X)$ under f is plainly compact, we can define the induced mapping $f^{*}: C(X) \rightarrow C(X)$ in a natural way. Note that $(f \circ g)^{*}=f^{*} \circ g^{*}$ for any continuous self-mappings f, g. It is obvious that any induced mapping is contained in \mathscr{F}.

A self-mapping h defined on a metric space (E, δ) is said to satisfy the condition ψ provided that

$$
\delta(h(x), h(y)) \leq \psi(\delta(x, y)) \quad \text { for every } x, y \in E,
$$

where $\psi(t)$ is a non-decreasing right-continuous real-valued function defined on $[0, \infty)$ satisfying $\psi(0)=0$. Then we have :

Proposition 1. Suppose that $f: X \rightarrow X$ satisfies the condition ψ. Then the induced mapping $f^{*}: C(X) \rightarrow C(X)$ also satisfies the same condition ψ.

Proof. It is easily seen that $N_{\psi(\delta)}(f(x)) \geq f\left(N_{\delta}(x)\right)$ for all $x \in C(X)$ and $\delta \geq 0$. Put $s=d_{H}(x, y)$ for brevity. Then for any $\varepsilon>0$, we have $y \leq N_{s+\varepsilon}(x)$ and therefore $f(y) \leq f\left(N_{s+\varepsilon}(x)\right) \leq N_{\psi(s+\varepsilon)}(f(x))$. Similarly $f(x) \leq N_{\psi(s+\varepsilon)}(f(y))$. Thus, by definition, $d_{H}\left(f^{*}(x), f^{*}(y)\right) \leq \psi(s+\varepsilon)$. Taking $\varepsilon \rightarrow 0+$, we get the required inequality.

Proposition 2. Suppose that the induced mapping f_{j}^{*} satisfies the condition ψ_{j} for $1 \leq j \leq m$. Then the mapping $F=f_{1}^{*}+\cdots+f_{m}^{*} \in \mathscr{I}$ satisfies the condition $\psi(t)=\max _{j} \psi_{j}(t)$.

The proof is straightforward.
A mapping satisfying the condition ψ, where $\psi(t)<t$ for any $t>0$, is called a ψ-contraction. Suppose now that f_{1}, \cdots, f_{m} are all ψ-contractions on X. Then, by Propositions 1 and 2, the mapping $F=f_{1}^{*}+\cdots+f_{m}^{*}$ is a ψ-contraction on $C(X)$. Therefore F has a unique fixed point K in $C(X)$, in other words, K is a unique non-empty compact subset of X satisfying the equality $K=f_{1}(K)+\cdots+f_{m}(K)$. This gives fairly simple another proof for the existence and uniqueness of the invariant set under several contractions discussed in [2].
3. Regular mappings. Given a mapping $F \in \mathscr{P}$, we will associate two mappings $L_{F}, R_{F}: C(X) \rightarrow 2^{X}$ as follows:

$$
L_{F}(x)=\limsup _{n \rightarrow \infty} F^{n}(x) \quad \text { and } \quad R_{F}(x)=\text { closure of } \sum_{n \geq 0} F^{n}(x) .
$$

A mapping F is said to be regular provided that $R_{F}(x) \in C(X)$ for every $x \in C(X)$. Note that $R_{F}(x) \in C(X)$ implies $L_{F}(x) \in C(X)$. If the space X is compact, every $F \in \mathscr{F}$ must be regular.

Proposition 3. Every ψ-contraction $F \in \mathscr{F}$ is regular. Moreover, R_{F} belongs to \mathscr{F} and satisfies the condition $\psi(t)=t$.

Proof. Put $x_{n}=F^{n}(x)$ for brevity. For any $\varepsilon>0$, define a sufficiently large integer N such that $\psi^{N}\left(d_{H}\left(x_{0}, x_{1}\right)\right) \leq \varepsilon-\psi(\varepsilon)$. Since

$$
d_{H}\left(x_{N}, x_{N+1}\right) \leq \psi^{N}\left(d_{H}\left(x_{0}, x_{1}\right)\right) \leq \varepsilon-\psi(\varepsilon),
$$

we have inductively

$$
d_{H}\left(x_{N}, x_{N+k}\right) \leq d_{H}\left(x_{N}, x_{N+1}\right)+d_{H}\left(x_{N+1}, x_{N+k}\right) \leq \varepsilon-\psi(\varepsilon)+\psi\left(d_{H}\left(x_{N}, x_{N+k-1}\right)\right) \leq \varepsilon
$$

for any $k \geq 1$. (This means that $\left\{x_{n}\right\}$ is a Cauchy sequence.) Let $\gamma(x)$, the measure of noncompactness of x [3], be $\inf \{\varepsilon>0 ; x$ can be covered by a finite number of sets of diameter less than or equal to $\varepsilon\}$. Then,

$$
\gamma\left(\sum_{n \geq 0} x_{n}\right) \leq \gamma\left(\sum_{n \geq N} x_{n}\right) \leq \gamma\left(N_{\epsilon}\left(x_{N}\right)\right) \leq \gamma\left(x_{N}\right)+2 \varepsilon=2 \varepsilon .
$$

Since ε is arbitrary, this implies that the set $\sum_{n \geq 0} x_{n}$ is pre-compact. Finally, it is easily seen that

$$
d_{H}\left(R_{F}(x), R_{F}(y)\right) \leq \sup _{n} d_{H}\left(F^{n}(x), F^{n}(y)\right)=d_{H}(x, y)
$$

4. Inhomogeneous equations. Under these preparations, we will give our main theorems.

Theorem 1. Suppose that $F \in \mathscr{F}$ is a ψ-contraction. Then the following inhomogeneous equation:

$$
x=F(x)+v,
$$

has a unique solution $x=R_{F}(v)$ for every (fixed) $v \in C(X)$. Moreover, $R_{F}(v)$ $=K_{F}$ if and only if $v \leq K_{F}$, where K_{F} is a unique fixed point of F, in other words, $R_{F}^{-1}\left(K_{F}\right)$ is a principal ideal of $C(X)$.

Proof. Obviously $R_{F}(v)$ satisfies the equation considered. The constant mapping $c(x) \equiv v$ satisfies the condition $\psi_{0} \equiv 0$ and therefore $G=F+c$ is a ψ-contraction by Proposition 2. This yields the uniqueness of the solution. This implies that $R_{F}(v)=K_{F}$ if $v \leq K_{F}$. The converse is trivial.

By the above theorem, the operator R_{F} can be regarded as the resolvent $(I d-F)^{-1}$.

Theorem 2 (Alternative of Fredholm). Suppose that $F \in \mathscr{P}$ is regular. Then the following statements (a) and (b) are equivalent:
(a) there exists a unique solution of $x=F(x)+v$ for every $v \in C(X)$;
(b) F has a unique fixed point K_{F}.

Proof. It suffices to show (a) assuming (b). Suppose, on the contrary, that there are two distinct solutions u, w for some $v \in C(X)$. (Note that the equation has at least one solution since F is regular.) From (b), it follows $u \cdot w \neq \phi$. Without loss of generality, we can assume $z \equiv$ closure of $u-u \cdot w \neq \phi$. Then $u \cdot w \geq K_{F}$ since $u \cdot w \geq F(u) \cdot F(w) \geq F(u \cdot w)$. We now show $F(z) \geq z$. For otherwise, there exists a point $p \in u-u \cdot w$ such that $p \notin F(z)$. Thus, $p \notin F(z)+F(u \cdot w)+v=F(u)+v=u$, contrary to $p \in u$. Since $F(z) \geq z$ and $u \geq z, F^{n}(u) \geq z$ for any $n \geq 0$. Hence $K_{F} \geq z \geq u-u \cdot w$ and this contradiction completes the proof.

Concerning fixed points of F, we have:
Theorem 3. If $R_{F}(x) \in C(X)$, then $L_{F}(x)$ is a fixed point of F.
Corollary. Suppose that $F \in \mathscr{P}$ is regular and that F has a unique fixed point K_{F}. Then $\limsup _{n \rightarrow \infty} F^{n}(x)=K_{F}$ for every $x \in C(X)$.

Before proving the theorem, we need:
Lemma. Let $F \in \mathscr{F}$ and $x \in C(X)$. For any $q \in F(x)$, there exists at least one point $p \in x$ such that $q \in F(\{p\})$.

Proof. For any $\varepsilon>0, x$ can be represented as a finite sum $\sum_{j=1}^{m} x_{j}$ such that $x_{j} \in C(X)$ and diam $\left(x_{j}\right)<\varepsilon$. Since $F(x)=\sum_{j=1}^{m} F\left(x_{j}\right)$, there exists x_{i} satisfying $q \in F\left(x_{i}\right)$. Continuing in this way, we find a sequence $x \geq y_{1} \geq y_{2}$ $\geq \cdots$ such that diam $\left(y_{n}\right)<2^{-n}$ and $q \in F\left(y_{n}\right)$. Let $p=\lim _{n \rightarrow \infty} y_{n} \in x$. Since $y_{n} \rightarrow\{p\}(n \rightarrow \infty)$ in $C(X)$, we have $F\left(y_{n}\right) \rightarrow F(\{p\})(n \rightarrow \infty)$ by the continuity of F. Hence $q \in F(\{p\})$.

Proof of Theorem 3. Put $Q=L_{F}(x) \in C(X)$ for brevity. We first show $F(Q) \geq Q$. For any $p \in Q$, there exists a sequence $\left\{q_{n}\right\} \leq X$ such that $q_{n} \in F^{m_{n}}(x)$ and $q_{n} \rightarrow p(n \rightarrow \infty)$ in X. By Lemma, there exists $r_{n} \in F^{m_{n-1}}(x)$ satisfying $q_{n} \in F\left(\left\{r_{n}\right\}\right)$. Since $r_{n} \in R_{F}(x)$, without loss of generality, we can assume that $r_{n} \rightarrow r^{*} \in Q(n \rightarrow \infty)$ in X. Therefore $\left\{r_{n}\right\} \rightarrow\left\{r^{*}\right\}(n \rightarrow \infty)$ in $C(X)$ and we get $F\left(\left\{r_{n}\right\}\right) \rightarrow F\left(\left\{r^{*}\right\}\right)$. Hence $p \in F\left(\left\{r^{*}\right\}\right) \leq F(Q)$.

We next show the converse inequality $F(Q) \leq Q$. Let $\left\{q_{n}\right\}$ be the same sequence in X as above. Since $F\left(\left\{q_{n}\right\}\right) \leq F^{m_{n}+1}(x)$ and $F\left(\left\{q_{n}\right\}\right) \rightarrow F(\{p\})(n \rightarrow \infty)$
in $C(X)$, we get $F(\{p\}) \leq Q$. For any $\varepsilon>0$, there exists $\delta_{p}>0$ such that $F\left(N_{p}\right)$ $\leq N_{\varepsilon}(F(\{p\}))$ where $N_{p}=$ closure of $N_{\delta_{p}}(\{p\}) \cdot Q \in C(X)$. Since $\left\{N_{\delta_{p}}(\{p\})\right\}_{p \in Q}$ is an open covering of Q, there exist $p_{1}, \cdots, p_{m} \in Q$ such that $Q \leq \sum_{j=1}^{m} N_{p_{j}}$. Therefore

$$
F(Q) \leq \sum_{j=1}^{m} F\left(N_{p_{j}}\right) \leq \sum_{j=1}^{m} N_{\varepsilon}\left(F\left(\left\{p_{j}\right\}\right)\right) \leq N_{\varepsilon}(Q)
$$

Since ε is arbitrary, we have $F(Q) \leq Q$. This completes the proof.
Acknowledgement. The author would like to thank Prof. M. Yamaguti for his interest and encouragement.

References

[1] G. Birkhoff: Lattice Theory. Amer. Math. Soc. (1967) (3rd ed.).
[2] M. Hata: On the structure of self-similar sets (to appear in Japan J. Appl. Math.).
[3] C. Kuratowski: Sur les espaces complets. Fund. Math., 15, 301-309 (1930).
[4] E. Michael: Topologies on Spaces of Subsets. Trans. Amer. Math. Soc., 71, 152-182 (1951).

