49. Universal Central Extensions of Chevalley Algebras over Laurent Polynomial Rings and GIM Lie Algebras

By Jun MORITA*) and Yōji YOSHII**)

(Communicated by Kôsaku YOSIDA, M. J. A., June 11, 1985)

We will give an explicit description of the universal central extensions of Chevalley algebras over Laurent polynomial rings with n variables, which is a natural generalization of the result for n=1 established in Garland [1], and which is obtained in a different way from Kassel [4]. Using this, we will discuss about a certain class of GIM Lie algebras which are introduced by Slodowy [5] as a generalization of Kac-Moody Lie algebras.

1. Central extensions of Chevalley algebras. Let F be a field of characteristic zero. For a finite dimensional split simple Lie algebra g over F and an F-algebra R, we will write $g(R) = R \bigotimes_F g$ and view g(R) as a Lie algebra over F. Since g(R) = [g(R), g(R)], there is a unique, up to isomorphism, universal central extension of g(R). A central extension of g(R): (1) $0 \longrightarrow V \longrightarrow \alpha \longrightarrow g(R) \longrightarrow 0$ can be reduced to a skew-symmetric F-bilinear mapping:

(2) $\{\cdot, \cdot\}: R \times R \longrightarrow V$

satisfying $\{u, vw\} + \{v, wu\} + \{w, uv\} = 0$ for all $u, v, w \in R$ (cf. [1], [3]).

2. Laurent polynomial rings. We denote by $F[X_1^{\pm 1}, \dots, X_n^{\pm 1}]$ the ring of Laurent polynomials in X_1, \dots, X_n with coefficients in F. Let c be the F-vector space with a basis $\{z_v^{(1)}, \dots, z_v^{(n-1)}, z_0^{(n)} | v \in \mathbb{Z}^n\}$. We define an F-bilinear mapping $\{\cdot, \cdot\}_1$:

$$F[X_1^{\pm 1}, \cdots, X_n^{\pm 1}] \times F[X_1^{\pm 1}, \cdots, X_n^{\pm 1}] \longrightarrow \mathfrak{c}$$

by, for all $r_i, s_i \in \mathbb{Z}$ $(i=1, \dots, n)$,

 $(3) \qquad \{X_1^{r_1} \cdots X_n^{r_n}, X_1^{s_1} \cdots X_n^{s_n}\}_1$

$$= \begin{cases} \sum_{i=1}^{k-1} \frac{r_i s_k - s_i r_k}{l_k} z_v^{(i)} + \sum_{j=k+1}^n r_j z_v^{(j-1)} \\ & \text{if } l_k \neq 0, \ l_{k+1} = \dots = l_n = 0 \text{ for some } k, \\ \sum_{i=1}^n r_i z_0^{(i)} & \text{if } l_i = 0 \text{ for all } i, \end{cases}$$

where $v = (l_1, \dots, l_n)$ and $l_i = r_i + s_i$.

Theorem 1. Let g be a finite dimensional split simple Lie algebra over F. Then the mapping (3) determines a universal central extension of $g(F[X_1^{\pm 1}, \dots, X_n^{\pm 1}])$.

Notice that the dimension of c is one (n=1); infinite $(n \ge 2)$.

3. *n*-fold extended Cartan matrices. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} , and $\mathfrak{g}=\mathfrak{h}+\sum_{\alpha\in \mathfrak{d}}\mathfrak{g}^{\alpha}$ the root space decomposition of \mathfrak{g} with respect to

^{*)} Institute of Mathematics, University of Tsukuba.

^{**&#}x27; Komaba Junior High School attached to University of Tsukuba.

J. MORITA and Y. YOSHII

[Vol. 61(A),

b, where Δ is the root system of $(\mathfrak{g}, \mathfrak{h})$ and \mathfrak{g}^{α} is the root subspace of \mathfrak{g} corresponding to $\alpha \in \Delta$. We choose a fundamental system $\Pi = \{\alpha_1, \dots, \alpha_l\}$ of Δ , where $l = \dim \mathfrak{h}$. Let H_{α} be the coroot of α . We fix a Chevalley basis $\{H_{\alpha_i}, E_{\alpha} | 1 \leq i \leq l, \alpha \in \Delta\}$ of \mathfrak{g} (cf. [2]). Here $H_{\alpha_i} \in \mathfrak{h}$ and $E_{\alpha} \in \mathfrak{g}^{\alpha}$. The Cartan subalgebra may be denoted by \mathfrak{g}^0 . Let $Q = \sum_{i=1}^{l+n} Z \tilde{\beta}_i$ be the free Z-module generated by $\tilde{\beta}_1, \dots, \tilde{\beta}_{l+n}$. For each $\tilde{\beta} = (k_1, \dots, k_{l+n}) \in Q$, we define the subspace:

$$\mathfrak{g}(F[X_1^{\pm 1}, \cdots, X_n^{\pm 1}])^{\tilde{\beta}} = (FX_1^{k_{l+1}} \cdots X_n^{k_{l+n}}) \otimes_F \mathfrak{g}^{k_1 \alpha_1 + \cdots + k_l \alpha_l}$$

of $g(F[X_1^{\pm 1}, \dots, X_n^{\pm 1}])$. Then $g(F[X_1^{\pm 1}, \dots, X_n^{\pm 1}])$ is a Q-graded Lie algebra over F. Let $\beta = b_1 \alpha_1 + \dots + b_i \alpha_i$ be the negative highest root of Δ with respect to Π . Put $\tilde{\alpha}_i = \tilde{\beta}_i$ $(1 \le i \le l)$ and $\tilde{\alpha}_j = b_1 \tilde{\beta}_1 + \dots + b_i \tilde{\beta}_i + \tilde{\beta}_j$ $(l+1 \le j \le l + n)$. Then $\{\tilde{\alpha}_i | 1 \le i \le l + n\}$ is a new basis of Q, and we will use this basis. Let $\alpha_j = \beta$ $(l+1 \le j \le l + n)$. We denote by $A^{[n]}$ the *n*-fold extended Cartan matrix of g, which is defined by

$$A^{[n]} = \left(2\frac{(\alpha_i, \alpha_j)}{(\alpha_i, \alpha_i)}\right)_{1 \le i, j \le l+n}.$$

4. GIM Lie algebras. An $m \times m$ integral matrix $B = (b_{ij})$ is called a generalized intersection matrix (=GIM) if

(i)
$$b_{ii}=2$$
,

(ii)
$$b_{ij} < 0 \Leftrightarrow b_{ji} < 0$$
,

(iii)
$$b_{ij} > 0 \iff b_{ji} > 0$$
.

For each GIM $B = (b_{ij})$, we denote by L(B) the Lie algebra over F generated by $e_1, \dots, e_m, h_1, \dots, h_m, f_1, \dots, f_m$ with the defining relations: $[h_i, h_j] = 0$, $[h_i, e_j] = b_{ij}e_j$, $[h_i, f_j] = -b_{ij}f_j$, $[e_i, f_i] = h_i$ for all $i, j, [e_i, f_j] = (\operatorname{ad} e_i)^{|b_{ij}|+1}e_j =$ $(\operatorname{ad} f_i)^{|b_{ij}|+1}f_j = 0$ for distinct i, j with $b_{ij} \leq 0$, $[e_i, e_j] = [f_i, f_j] = (\operatorname{ad} e_i)^{b_{ij}+1}f_j =$ $(\operatorname{ad} f_i)^{|b_{ij}|+1}e_j = 0$ for distinct i, j with $b_{ij} > 0$. Then L(B) is a Z^m -graded Lie algebra over F in usual sense (cf. [5]).

Next suppose $B = A^{[n]}$. Then there is an extension

 $\phi: L(A^{[n]}) \longrightarrow \mathfrak{g}(F[X_1^{\pm 1}, \cdots, X_n^{\pm 1}])$

defined by $\phi(e_i) = E_{a_i}$, $\phi(e_{l+j}) = X_j \otimes E_\beta$, $\phi(h_i) = H_{a_i}$, $\phi(h_{l+j}) = H_\beta$, $\phi(f_i) = E_{-a_i}$, $\phi(f_{l+j}) = X_j^{-1} \otimes E_{-\beta}$ for all $i=1, \dots, l$ and $j=1, \dots, n$. Then the kernel J_1 of ϕ is homogeneous since both $L(A^{[n]})$ and $\mathfrak{g}(F[X_1^{\pm 1}, \dots, X_n^{\pm 1}])$ are Q-graded. Furthermore J_1 is a maximal homogeneous ideal of $L(A^{[n]})$. Let $J = [L(A^{[n]}), J_1]$.

Theorem 2. Notation is as above. Then $L(A^{[n]})/J$ is a universal central extension of $g(F[X_1^{\pm 1}, \dots, X_n^{\pm 1}])$.

Let I_1 be the maximal homogeneous ideal of $L(A^{[n]})$ which intersects the subspace of degree zero trivially. Put $I = I_1 + J$ and $L'(A^{[n]}) = L(A^{[n]})/I$. Then ϕ induces a central extension $\phi': L'(A^{[n]}) \rightarrow \mathfrak{g}(F[X_1^{\pm 1}, \dots, X_n^{\pm 1}])$. Let $V = \bigoplus_{i=1}^n Fv_i$, and let

 $\{\cdot, \cdot\}' : F[X_1^{\pm 1}, \cdots, X_n^{\pm 1}] \times F[X_1^{\pm 1}, \cdots, X_n^{\pm 1}] \longrightarrow V$ be the mapping defined by

 $\{X_1^{r_1}\cdots X_n^{r_n}, X_1^{s_1}\cdots X_n^{s_n}\}' = \delta_{r_1,-s_1}\cdots \delta_{r_n,-s_n}(r_1v_1+\cdots+r_nv_n).$ Theorem 3. Notation is as above. Then the central extension ϕ' is

180

No. 6]

corresponding to the mapping $\{\cdot, \cdot\}'$.

The algebra $L'(A^{[n]})$ is an *n*-fold generalization of the standard affine (Kac-Moody) Lie algebra $L(A^{[1]}) = L'(A^{[1]})$.

5. A remark. Let (Ω, d) be the module of relative differential forms of $F[X_1^{\pm 1}, \dots, X_n^{\pm 1}]$ over F. Using the fact that $F[X_1^{\pm 1}, \dots, X_n^{\pm 1}]$ is a Hopf algebra, whose structure is given by $\Delta(X_i) = X_i \otimes X_i$ and $\varepsilon(X_i) = 1$ for all $i=1, \dots, n$, the module Ω is identified with $F[X_1^{\pm 1}, \dots, X_n^{\pm 1}] \otimes_F I/I^2$, where I is the kernel of ε (cf. [6]). Then the mapping d is identified with $(1 \otimes \pi) \Delta$, where π is the composition of the projection from $F[X_1^{\pm 1}, \dots, X_n^{\pm 1}] = F \oplus I$ to I and the canonical homomorphism: $I \to I/I^2$. Set $\Omega' = \Omega/d(F[X_1^{\pm 1}, \dots, X_n^{\pm 1}])$. We define the mapping τ of $F[X_1^{\pm 1}, \dots, X_n^{\pm 1}] \times F[X_1^{\pm 1}, \dots, X_n^{\pm 1}]$ to Ω' by

(4) $\tau(u, v) = \overline{ud(v)}$

for all $u, v \in F[X_1^{\pm 1}, \dots, X_n^{\pm 1}]$. Then τ satisfies the condition of (2). The theory of Kassel [4] says that τ gives a universal central extension of $g(F[X_1^{\pm 1}, \dots, X_n^{\pm 1}])$. It is easily seen that $(c, \{\cdot, \cdot\}_1)$ is equivalent to (Ω', τ) (cf. [7]).

Our results seem to be answers to some questions in [9, Section 4.15].

References

- H. Garland: The arithmetic theory of loop groups. Publ. Math. IHES, 52, 5-136 (1982).
- [2] J. E. Humphreys: Introduction to Lie Algebras and Representation Theory. Springer-Verlag, New York (1972).
- [3] N. Jacobson: Lie Algebras. Interscience, New York (1962).
- [4] C. Kassel: Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra. J. Pure Appl. Algebra, (2-3), 34, 265– 275 (1984).
- [5] P. Slodowy: Another new class of Lie algebras (preprint).
- [6] W. C. Waterhouse: Introduction to Affine Group Schemes. Springer-Verlag, New York (1979).
- [7] Y. Yoshii: Master thesis. Master's Program of Education, University of Tsukuba (1985) (in Japanese).
- [8] P. Slodowy: Beyond Kac-Moody algebras, and inside (to appear in the Proceedings of the "Windsor Lie Algebra Conference". Windsor, Ontario (1984)) (a revised version of [5]).
- [9] ——: Singularitäten, Kac-Moody-Liealgebren, assoziierte Gruppen und Verallgemeinerungen. Habilitationsschrift, Universität Bonn (1984–85).