48. Continuum of Ideals in $R(\Phi_2) \otimes_{\max} R'(\Phi_2)$

By Liang Sen Wu

Department of Mathematics, East China Normal University

(Communicated by Kôsaku Yosida, M. J. A., June 11, 1985)

Let Φ_2 be the free group on two generators a and b. Let $\mathcal{H} = \mathcal{L}^2(\Phi_2)$ be the Hilbert space of all complex valued functions f(g) on Φ_2 such that

$$\sum_{g \in \Phi_2} |f(g)|^2 < \infty$$
.

For each $g_1 \in \Phi_2$ we define the unitary operator $U(g_1)$ on \mathcal{H} given by $(U(g_1)f)(g) = f(g_1^{-1}g)$, for all $f \in \mathcal{H}$.

The von Neumann algebra generated by $\{U(g), g \in \Phi_2\}$ is denoted by $R(\Phi_2)$. It is known that $R(\Phi_2)$ is a II_1 -factor.

The purpose of this paper is to show the existence of continuum of ideals in $R(\Phi_2) \bigotimes_{\max} R'(\Phi_2)$.

We will use the following universal property of the projective C^* -tensor product.

Lemma 1. Given C*-algebras A_1 , A_2 and B, if $\pi_1: A_1 \rightarrow B$ and $\pi_2: A_2 \rightarrow B$ are homomorphisms with commuting ranges, then there exists a unique homomorphism π of the projective C*-tensor product $A_1 \otimes_{\max} A_2$ into B such that

$$\pi(x_1 \otimes x_2) = \pi_1(x_1)\pi_2(x_2)$$
 $x_1 \in A_1, x_2 \in A_2$

and the image $\pi(A_1 \otimes_{\max} A_2)$ is the C*-subalgebra of B generated by $\pi_1(A_1)$ and $\pi_2(A_2)$ (cf. [4, p. 207]).

We denote by $\operatorname{Int}(R(\Phi_2))$ and $\operatorname{Aut}(R(\Phi_2))$ the set of all inner automorphisms and that of all automorphisms of $R(\Phi_2)$ respectively, with the topology of strong pointwise convergence in $R(\Phi_2)$.

Lemma 2. Int $(R(\Phi_2))$ is closed in Aut $(R(\Phi_2))$.

For the proof see [3, Corollary 3.8].

In the following we will use the Connes's characterization of approximately inner automorphisms.

Lemma 3. Let N be a factor of type II_1 with separable predual acting in $\mathcal{K}=L^2(N,\tau)$. Then the following conditions are equivalent for $\theta \in \operatorname{Aut}(N)$,

- (a) $\theta \in \overline{\operatorname{Int}(N)}$;
- (b) There exists an automorphism of the C*-algebra generated by N and N' in \mathcal{K} which is θ on N and identity on N' ([2, p. 89]).

In Lemma 1, if we put $A_1 = R(\Phi_2)$, $A_2 = R'(\Phi_2)$ and π_1 , π_2 as identical map, there exists a homomorphism η such that

$$R \underset{\max}{\bigotimes} R' \xrightarrow{\eta} C^*(R, R'), \ R \underset{\max}{\bigotimes} R'/I \cong C^*(R, R')$$

in which I is $Ker(\eta)$.

For any $\alpha \in \operatorname{Aut}(R(\Phi_2))$, the automorphism $\alpha \otimes Id$ defined on the algebraic tensor product of R and R' can be uniquely extended to $R \otimes_{\max} R'$. It is still denoted by $\alpha \otimes Id$.

Lemma 4. I is a proper ideal of $R \otimes_{\max} R'$.

Proof. If I were $\{0\}$, there would exist an isomorphism η^* from $R \otimes_{\max} R'$ to $C^*(R, R')$.

By [1, p. 593, Corollary 2], the outer automorphism of Φ_2 changing two generators can be extended to the outer automorphism of $R(\Phi_2)$.

Choosing $\alpha \in \overline{\operatorname{Int}}(R(\Phi_2)) = \operatorname{Int}(R(\Phi_2))$, we define

$$\overline{\alpha}(z) = \eta^*(\alpha \otimes Id)\eta^{*-1}(z)$$
 $z \in C^*(R, R').$

Therefore, $\overline{\alpha}(xy) = \alpha(x)y$, for $x \in R$, $y \in R'$.

It follows that $\bar{\alpha}$ is an automorphism on $C^*(R, R')$, which is α on R and identity on R'. By use of Lemma 3, $\alpha \in \text{Int}(R(\Phi_2))$. It is a contradiction.

Lemma 5. If $\alpha, \beta \in \operatorname{Aut}(R(\Phi_2)), (\alpha \otimes Id)(I) = (\beta \otimes Id)(I)$ if and only if $\alpha^{-1}\beta \in \operatorname{Int}\left(R(\Phi_2)\right)$.

Proof. If $(\alpha \otimes Id)(I) = I$, we will prove $\alpha \in \operatorname{Int}(R(\Phi_2))$. We put $\eta_1 =$ $\eta(\alpha \otimes Id)$. Then η_1 is a homomorphism from $R \otimes_{\max} R'$ onto $C^*(R, R')$.

By Lemma 1, if we put $A_1 = R(\Phi_2)$, $A_2 = R'(\Phi_2)$ and $\pi_1 = \alpha$, π_2 is identical map, η_1 is the homomorphism such that

$$R \bigotimes_{\text{max}} R' \xrightarrow{\eta_1} C^*(R, R').$$

 $R \underset{\text{max}}{\bigotimes} R' \xrightarrow[\text{onto}]{\eta_1} C^*(R, R').$ We denote $\text{Ker } (\eta_1) \text{ by } I_{\alpha}$. It is then clear that $\text{Ker } (\eta_1) = (\alpha^{-1} \otimes Id)(I)$. Then we consider the canonical decomposition of η_1 :

$$R \underset{\max}{\otimes} R' \longrightarrow R \underset{\max}{\otimes} R'/I \xrightarrow{\alpha \odot Id} \eta_1(R \underset{\max}{\otimes} R') = C^*(R, R').$$

Since $(\alpha \otimes Id)(I) = I$, then $I_{\alpha} = I$.

Therefore, $\alpha \odot Id$ is an automorphism of $C^*(R, R')$, which is α on R and identity on R'. By Lemma 3, $\alpha \in \text{Int}(R(\Phi_2))$. If $\alpha \in \text{Int}(R(\Phi_2))$, by Lemma 3, there is an automorphism $\alpha \odot Id \in Aut(C^*(R,R'))$ which is α on R and Since $C^*(R, R') = R \otimes_{\max} R' / I$ we have that $(\alpha \otimes Id)(I) = I$. identity on R'.

Lemma 6. There is a group of outer automorphisms with continuous parameter in Aut $(R(\Phi_2))$.

Proof. From [1, Theorem 5.2], we have the following situation. Let $\{\lambda_{\alpha} : \alpha \in \Phi_2\}$ be a set of complex numbers of absolute value 1 with $\lambda_{\alpha\beta} = \lambda_{\alpha}\lambda_{\beta}$ then $S(U_a) = \lambda_a U_a$ defines a spatial automorphism of $R(\Phi_a)$, where $\{U_a : \alpha \in \Phi_a\}$ is the unitary representation of Φ_2 defined in [1]. The group of all such automorphisms forms a group of outer automorphisms if $(\Phi_2)_0$ is the center of Φ_2 , where $(\Phi_2)_0$ denotes the normal subgroup of Φ_2 consisting of all elements in Φ_2 with finite conjugacy classes.

Now, evidently, $(\Phi_2)_0$ is the center of Φ_2 , so that there is a group of outer automorphisms of Φ_2 with continuous parameter.

Theorem. There is continuum of ideals in $R \otimes_{\max} R'$.

Proof. By Lemma 6, in Aut $(R(\Phi_2))$ there is a group of outer automorphisms with continuous parameter which is denoted by $\{\alpha_{\lambda}\}, \lambda \in [a, b]$.

Setting $I_{\lambda} = (\alpha_{\lambda} \otimes Id)(I)$, by Lemma 5, it follows that $I_{\lambda} \neq I_{\mu}$ for $\lambda \neq \mu$. So $\{I_{\lambda}\}$ is continuum of ideals in $R \otimes_{\max} R'$.

I am indebted to Prof. M. Takesaki for suggesting this problem.

References

- [1] H. Behncke: Automorphisms of crossed products. Tōhoku Math. J., 21, 580-600 (1969).
- [2] A. Connes: Classification of injective factors. Ann. of Math., 104, 73-115 (1976).
- [3] —: Almost periodic state and factors of type III₁. J. Funct. Anal., 16, 415-445 (1974).
- [4] M. Takesaki: Theory of Operator Algebras 1. Springer-Verlag, New York (1979).