43. A Formula of Eigenfunction Expansions II.

Exterior Dirichlet Problem in a Lattice

By Kazuhiko Аомото
Department of Mathematics, Nagoya University

(Communicated by Kunihiko Kodaira, m. J. A., June 11, 1985)

We apply the method used in my previous note to exterior Dirichlet problems in a lattice. It is shown there is no point spectrum.

1. Let Γ be a free abelian group with g generators $\sigma_{1}, \cdots, \sigma_{g}$ and A_{0} be a self-adjoint bounded linear operator on $l^{2}(\Gamma)$ described by a symmetric stochastic walk on Γ :

$$
\begin{equation*}
A_{0} u(\gamma)=\sum_{i=1}^{g} p_{i}\left(u\left(\gamma \sigma_{i}\right)+u\left(\gamma \sigma_{i}^{-1}\right)\right) . \tag{1.1}
\end{equation*}
$$

Let A be the restriction of A_{0} on $l^{2}(\Gamma-\Omega)$ corresponding to the exterior Dirichlet problem outside a finite subset Ω. Physically this corresponds to a random walk with traps Ω (see [5]). The Green function for A_{0} is described by the Fourier integral formula
for $\gamma=\sigma_{1}^{m_{1}} \cdots \sigma_{g}^{m_{g}}$ and $\gamma^{\prime}=\sigma_{1}^{m_{1}^{\prime}} \cdots \sigma_{g}^{m_{g}^{\prime}}$ where $z \in C-[-1,1]$. The integral depends only on $\left|m_{1}-m_{1}^{\prime}\right|, \cdots,\left|m_{g}-m_{g}^{\prime}\right|$.

Let S^{g-1} be the unit sphere of dimension $g-1$ and $S^{g-1}\left(\varepsilon_{1}, \cdots, \varepsilon_{g}\right)$ be the quadrant of S^{g-1} consisting of points $\left(\xi_{1}, \cdots, \xi_{q}\right) \in S^{g-1}$ such that $\varepsilon_{1} \xi_{1}$ $>0, \cdots, \varepsilon_{g} \xi_{g}>0$ for $\varepsilon_{j}= \pm 1$. We denote by V_{z} the analytic hypersurface (so called complex Fermi hypersurface) in $\left(C^{*}\right)^{g}$ defined by

$$
\begin{equation*}
F\left(z, \omega, \omega^{-1}\right) \equiv z-\sum_{j=1}^{g} p_{j}\left(\omega_{j}+\omega_{j}^{-1}\right)=0 . \tag{1.3}
\end{equation*}
$$

For a given direction at infinity $\xi=\left(\xi_{1}, \cdots, \xi_{g}\right) \in S^{g-1}\left(\varepsilon_{1}, \cdots, \varepsilon_{g}\right)$ consider the following equation with respect to the variables $\omega_{j}=\exp \left(\sqrt{-1} \theta_{j}\right)$ which is the inverse of the Gauss map κ from V_{z} to S^{g-1} :

$$
\begin{equation*}
\frac{1}{i} \frac{\partial F}{\partial \theta_{j}}\left(\equiv \omega_{j} \frac{\partial F}{\partial \omega_{j}}\right)=\xi_{j} \rho, \quad 1 \leqq j \leqq g \tag{1.4}
\end{equation*}
$$

for an unknown ρ. This has the following solution $\hat{\omega}=\left(\hat{\omega}_{1}, \cdots, \hat{\omega}_{g}\right) \in V_{z}$:

$$
\begin{equation*}
\hat{\omega}_{j}=\frac{-\varepsilon_{j} \xi_{j} \rho+\sqrt{\left(\rho \xi_{j}\right)^{2}+4 p_{j}^{2}}}{2 p_{j}} \tag{1.5}
\end{equation*}
$$

where ρ denotes the unique solution of the equation

$$
\begin{equation*}
\sum_{j=1}^{g} \sqrt{\zeta_{j}^{2}+4 p_{j}^{2}}=z \quad \text { for } \zeta_{j}=\xi_{j} \rho \tag{1.6}
\end{equation*}
$$

such that $\rho>0$ for $z>1$.
By saddle point method and Lagrangean analysis for the Hamiltonian $\mathrm{I}_{m} \sum_{1}^{g} m_{j}^{\prime} \log \omega_{j}$ in the Kähler manifold V_{z} ([1]), we can prove

Proposition 1. We assume $z \notin[-1,1]$. We fix $\xi=\left(\xi_{1}, \cdots, \xi_{q}\right) \in S^{g-1}$ such that $\xi_{1} \cdots \xi_{g} \neq 0$. When the ratio $m_{1}^{\prime}: \cdots: m_{g}^{\prime}$ converges to $\xi_{1}: \cdots: \xi_{g}$ at the infinity in the sense that for any $i \neq j$,

$$
\begin{equation*}
\lim _{\left|m_{i}^{\prime}\right|+\cdots+\left|m_{g}^{\prime}\right|-\infty} m_{j}^{\prime} / m_{i}^{\prime} \rightarrow \xi_{j} / \xi_{i} \tag{1.7}
\end{equation*}
$$

then the Green function $G_{0}\left(\gamma, \gamma^{\prime} \mid z\right)$ has the asymptotic behaviour in the direction ξ

$$
\begin{align*}
& G_{0}\left(e, \gamma^{\prime} \mid z\right) \sim\left(\frac{\rho}{2 \tau \pi}\right)^{g-1} \cdot\left\{\sum_{j=1}^{g} \frac{p_{j}\left(\hat{\omega}_{j}^{-1}-\hat{\omega}_{j}\right)^{2}}{\left(\hat{\omega}_{j}^{-1}+\hat{\omega}_{j}\right)}\right\}^{-1} \tag{1.8}\\
& \quad \cdot\left\{\prod_{j=1}^{g} p_{j}\left(\hat{\omega}_{j}^{-1}+\hat{\omega}_{j}\right)\right\}^{-1} \cdot \prod_{j=1}^{g} \hat{\omega}_{j}^{m_{j}^{\prime}}, \quad \text { for } \tau=\sqrt{m_{1}^{\prime 2}+\cdots+m_{g}^{\prime 2}}
\end{align*}
$$

and the basic eigenfunction $K_{0}(\gamma, \xi \mid z)$ has the simple form

$$
\begin{equation*}
K_{0}(\gamma, \xi \mid z)=\lim _{\gamma^{\prime} \rightarrow \xi} \frac{G_{0}\left(\gamma, \gamma^{\prime} \mid z\right)}{G_{0}\left(e, \gamma^{\prime} \mid z\right)}=\prod_{j=1}^{g}\left(\hat{\omega}_{j}\right)^{-m_{j \varepsilon_{j} j}} \tag{1.9}
\end{equation*}
$$

The behaviour of $G_{0}\left(\gamma, \gamma^{\prime} \mid z\right)$ along [$-1,1$] is more or less known and follows from its monodromic property obtained from the standard technique of Picard-Lefschetz transformations and Gauss-Manin systems (sometimes called holonomic systems) (see [5]). The result is as follows.

Lemma 1. Assume that $\varepsilon_{1} p_{1}+\cdots+\varepsilon_{g} p_{g}$ are different from each other for $\varepsilon_{j}= \pm 1$. In each domain $I_{m} z \geq 0$ or $I_{m} z \leq 0$, the function $G_{0}\left(\gamma, \gamma^{\prime} \mid z\right)$ is holomorphically extendable along $[-1,1]-\bigcup\left\{ \pm 2 p_{1} \pm \cdots \pm 2 p_{g}\right\}$ and has the singularities at $z=2 p_{1} \varepsilon_{1}+\cdots+2 p_{g} \varepsilon_{g}, \varepsilon_{j}= \pm 1$.

$$
\begin{align*}
& G_{0}\left(\gamma, \gamma^{\prime} \mid z\right) \sim \prod_{j=1}^{g}(-1)^{\left(m_{j}^{\prime}-m_{j}\right) \varepsilon_{j}} \cdot C\left(\varepsilon_{1}, \cdots, \varepsilon_{g}\right)\left(z-2 p_{1} \varepsilon_{1}-\cdots-2 p_{g} \varepsilon_{g}\right)^{(g-2) / 2} \tag{1.10}\\
& \quad \quad+t_{ \pm}^{\prime}\left(\gamma, \gamma^{\prime}\right), \quad \text { for } g \text { odd and } \\
& \sim \prod_{j=1}^{g}(-1)^{\left(m_{j}^{\prime}-m_{j}\right) \varepsilon_{j}} \cdot C\left(\varepsilon_{1}, \cdots, \varepsilon_{g}\right)\left(z-2 p_{1} \varepsilon_{1}-\cdots-2 p_{g} \varepsilon_{g}\right)^{(g-2) / 2} \tag{1.11}\\
& \quad \cdot \log \left(z-2 p_{1} \varepsilon_{1}-\cdots-2 p_{g} \varepsilon_{g}\right)+t_{ \pm}^{\prime}\left(\gamma, \gamma^{\prime}\right), \quad \text { for } g \text { even }
\end{align*}
$$

according as $z \rightarrow 2 p_{1} \varepsilon_{1}+\cdots+2 p_{g} \varepsilon_{g} \pm i 0$. Here $C\left(\varepsilon_{1}, \cdots, \varepsilon_{g}\right)$ denotes the constant

$$
\begin{equation*}
\frac{(-1)^{(g-1) / 2}\left\{\operatorname{or}(-1)^{g / 2}\right\} \cdot \Gamma((1 / 2) g)}{\sqrt{p_{1} p_{2} \cdots p_{g} \pi^{(g-1) / 2} \Gamma(g / 2)}} \varepsilon_{1} \cdots \varepsilon_{g} \tag{1.12}
\end{equation*}
$$

according as g is odd or even, and $t_{ \pm}^{\prime}\left(\gamma, \gamma^{\prime}\right)$ are also constants.
2. It is well-known that the Green function $G\left(\gamma, \gamma^{\prime} \mid z\right)=(z-A)_{r, r^{\prime}}^{-1}$ for $\gamma, \gamma^{\prime} \in \Gamma-\Omega$ can be described as follows:

$$
\begin{equation*}
G\left(\gamma, \gamma^{\prime} \mid z\right)=G_{0}\left(\gamma, \gamma^{\prime} \mid z\right)-\sum_{\omega, \omega^{\prime} \in \Omega} G_{0}(\gamma, \omega \mid z) H\left(\omega, \omega^{\prime} \mid z\right) G_{0}\left(\omega^{\prime}, \gamma^{\prime} \mid z\right) \tag{2.1}
\end{equation*}
$$

where $\left(H\left(\omega, \omega^{\prime} \mid z\right)\right)_{\omega, \omega^{\prime} \in \Omega}$ denotes the inverse of the Toeplitz matrix $T_{\Omega}=$ $\left(G_{0}\left(\omega, \omega^{\prime} \mid z\right)\right)_{\omega, \omega^{\prime} \in \Omega}$ of order $|\Omega|$, the number of elements of Ω. For $z \in C-$ $[-1,1], T_{\Omega}$ is invertible. In fact, the symmetric bilinear form

$$
\begin{equation*}
\Phi(u, v)=\sum_{\omega, \omega^{\prime} \in \Omega} G_{0}\left(\omega, \omega^{\prime} \mid z\right) u(\omega) v\left(\omega^{\prime}\right) \tag{2.2}
\end{equation*}
$$

on $l^{2}(\Omega)$ has the definite real part for $z>1$ or $z<-1$ and the definite imaginary part for $\mathrm{I}_{m} z \neq 0$. For $\xi \in S^{g-1}$ such that $\xi_{1} \cdots \xi_{g} \neq 0$, we have the formula for the transmission coefficient $\alpha(\xi \mid z)$:

$$
\begin{equation*}
\frac{1}{\alpha(\xi \mid z)}=\lim _{r^{\prime} \rightarrow \xi} \frac{G\left(e, \gamma^{\prime} \mid z\right)}{G_{0}\left(e, \gamma^{\prime} \mid z\right)}=1-\sum_{\omega, \omega^{\prime} \in \Omega} G_{0}(e, \omega \mid z) H\left(\omega, \omega^{\prime} \mid z\right) K_{0}\left(\omega^{\prime}, \xi \mid z\right) \tag{2.3}
\end{equation*}
$$

and the basic eigenfunction
(2.4) $K\left(\gamma, \xi^{\prime} \mid z\right)=\alpha\left(\xi^{\prime} \mid z\right)\left\{K_{0}\left(\gamma, \xi^{\prime} \mid z\right)-\sum_{\omega, \omega^{\prime}} G_{0}(\gamma, \omega \mid z) H\left(\omega, \omega^{\prime} \mid z\right) K_{0}\left(\omega^{\prime}, \xi^{\prime} \mid z\right)\right\}$.

The asymptotic behaviour of $K\left(\gamma, \xi^{\prime} \mid z\right)$ is as follows. For $\gamma \rightarrow \xi$,

$$
\begin{equation*}
K\left(\gamma, \xi^{\prime} \mid z\right) \sim \alpha(\xi \mid z)\left[K_{0}\left(\gamma, \xi^{\prime} \mid z\right)+\beta\left(\xi, \xi^{\prime} \mid z\right) G_{0}(\gamma, e \mid z)\right] \tag{2.5}
\end{equation*}
$$

where $\beta\left(\xi, \xi^{\prime} \mid z\right)$ denotes the scattering operator on S^{g-1} :

$$
\begin{equation*}
\beta\left(\xi, \xi^{\prime} \mid z\right)=-\sum_{\omega, \omega^{\prime}} K_{0}(\omega, \xi \mid z) H\left(\omega, \omega^{\prime} \mid z\right) K_{0}\left(\omega^{\prime}, \xi^{\prime} \mid z\right) \tag{2.6}
\end{equation*}
$$

Hence the determinant $S(z)$ of the matrix T_{Ω} plays the crucial role in the behaviour of $G\left(\gamma, \gamma^{\prime} \mid z\right)$ and $\beta\left(\xi, \xi^{\prime} \mid z\right)$ ([3]). We denote by T_{Ω}^{\prime} the matrix of order $|\Omega|$ with entries $t_{ \pm}^{\prime}\left(\gamma, \gamma^{\prime}\right)$ for $\gamma, \gamma^{\prime} \in \Omega$. Then

Lemma 2. (i) $T_{\Omega}(\lambda \pm i 0)$ is invertible for all $\lambda \in[-1,1]$ if $g \geq 3$.
(ii) Assume $g=2$ and $\lambda=2 p_{1} \varepsilon_{1}+2 p_{2} \varepsilon_{2}$, with $\varepsilon_{1}, \varepsilon_{2}= \pm 1$. We denote by $T_{\Omega}^{(0)}$ the matrix of order $|\Omega|$ with entries $(-1)^{\left(m_{1}^{1}-m_{1}\right) \varepsilon_{1}+\left(m_{2}^{\prime}-m_{2}\right) \varepsilon_{2}}$ for $\left(m_{1}, m_{2}\right)$, $\left(m_{1}^{\prime}, m_{2}^{\prime}\right) \in \Omega$. Then the polynomial of h

$$
\begin{equation*}
\operatorname{det}\left(T_{\Omega}^{(0)}+h T_{\Omega}^{\prime}\right)=h^{|\Omega|} \operatorname{det} T_{\Omega}^{\prime}+h^{|\Omega|-1} \cdot \Delta_{1}\left(T_{\Omega}^{\prime}, T_{\Omega}^{(0)}\right) \tag{2.7}
\end{equation*}
$$

does not vanish identically.
As an immediate consequence of it, we have
Proposition 2. We fix $\lambda \in[-1,1]$.
i) If $g \geq 3$, then $S(\lambda \pm i 0)$ exists and is different from zero.
ii) If $g=2$, then $S(\lambda \pm i 0)$ exists and is different from zero for $\lambda \neq$ $2 p_{1} \pm 2 p_{2}$. Near $\lambda=2 p_{1} \varepsilon_{1}+2 p_{2} \varepsilon_{2}$, we have

$$
\begin{equation*}
S(z) \sim C_{0} \log \left(z-2 p_{1} \varepsilon_{1}-2 p_{2} \varepsilon_{2}\right)+C_{1} \tag{2.8}
\end{equation*}
$$

such that C_{0} or C_{1} is different from zero.
This gives us the following conclusion:
Theorem 1. $G\left(\gamma, \gamma^{\prime} \mid z\right)$ is holomorphic outside $[-1,1]$ and has no poles along $[-1,1]$ in $\mathrm{I}_{m} z \geq 0$ or $\mathrm{I}_{m} z \leq 0$. The operator A has no point spectrum.

This is a difference analogue of the classical Rellich Theorem ([6]).
3. Let $\bar{\Gamma}$ be the compactification of Γ with the boundary S^{g-1}. Let \mathscr{F} be a cone in Γ with summit e and $\overline{\mathscr{E}}$ be its closure in $\bar{\Gamma}$. The density matrix $\mu(d \xi \mid \lambda)$ is a Radon measure on S^{g-1} such that

$$
\begin{equation*}
\lim _{\partial \neq 0} \frac{\delta}{\pi} \sum_{r^{\prime} \in \mathrm{t}}\left|G\left(0, \gamma^{\prime} \mid \lambda+i \delta\right)\right|^{2}=\int_{\mathrm{i} \cap S \theta-1} \mu(d \xi \mid \lambda) \tag{3.1}
\end{equation*}
$$

We compute the left hand side for a special infinitesimal cone.
Because of symmetry property of $G\left(\gamma, \gamma^{\prime} \mid z\right)$ we have only to compute $\mu(d \xi \mid \lambda)$ in the direction ξ such that $\xi_{1}>0, \cdots, \xi_{g}>0$. We choose positive numbers $a_{j}, b_{j}, 2 \leq j \leq g$ such that $b_{j}-a_{j}$ are very small. We denote by [$a_{2}, \cdots, a_{g} ; b_{2}, \cdots, b_{q}$] a small cone \mathfrak{f} in Γ consisting of elements $\gamma^{\prime}=\sigma_{1}^{m_{1}^{\prime}} \ldots$ $\sigma_{g}^{m_{g}^{\prime}}$ such that $a_{j} \leq m_{j}^{\prime} / m_{1}^{\prime} \leq b_{j}, 2 \leq j \leq g$. Since $G\left(e, \gamma^{\prime} \mid z\right)$ has no poles along [$-1,1$], we have

$$
\begin{equation*}
\lim _{\delta \neq 0} \frac{\delta}{\pi}\left|G\left(e, \gamma^{\prime} \mid \lambda+i \delta\right)\right|^{2}=0 . \tag{3.2}
\end{equation*}
$$

Hence in view of (1.8) and (2.3)

$$
\begin{equation*}
\lim _{\delta \leqslant 0} \frac{\delta}{\pi} \sum_{r^{\prime} \in\left[a_{2}, \ldots, a_{q} ; b_{2}, \ldots, b_{g}\right]}\left|G\left(e, \gamma^{\prime} \mid \lambda+i \delta\right)\right|^{2} \tag{3.3}
\end{equation*}
$$

$$
=\frac{1}{|\alpha(\xi \mid \lambda+i 0)|^{2}} \lim _{\delta 10} \frac{\delta}{\pi} r_{r^{\prime} \in\left[a a_{2}, \ldots, a_{i} ; b_{2}, \ldots, b_{0}\right]}\left|G_{0}\left(e, \gamma^{\prime} \mid \lambda+i \bar{i}\right)\right|^{2}
$$

for arbitrary $\xi \in S^{\vartheta-1}$ such that $a_{j} \leq \xi_{j} / \xi_{1} \leq b_{j}$.
(1.8), (3.3) and an elementary computation imply

$$
\begin{equation*}
\mu(d \xi \mid \lambda)=\frac{1}{(2 \pi)^{g}}\left|\frac{d \zeta_{2} \wedge \cdots \wedge d \zeta_{0}}{\zeta_{1} \prod_{j=2}^{g} \sqrt{\zeta_{j}^{2}+4 p_{j}^{2}}}\right| /|\alpha(\xi \mid \lambda+i 0)|^{2} \tag{3.4}
\end{equation*}
$$

because

$$
\left|\hat{\omega}_{j}\right|^{2} \sim 1-\frac{2 \xi_{j} \delta}{\sqrt{4 p_{j}^{2}+\zeta_{j}^{2}}} /\left(\sum_{j=1}^{g} \frac{|\rho| \xi_{j}^{2}}{\sqrt{4 p_{j}^{2}+\zeta_{j}^{2}}}\right)
$$

through the substitution $\zeta_{j}=\rho \xi_{j}$. This enables us to give
Definition. The Radon measure $\mu(d \xi \mid \lambda)$ on S^{g-1} for $\lambda \in[-1,1]$ is defined by (3.5) on the image of κ from the real Fermi hypersurface $V_{\lambda} \cap \boldsymbol{R}^{g}$ and vanishes elsewhere. This is identified with the canonical form on $V_{\lambda} \cap \boldsymbol{R}^{g}$ by κ :

$$
\begin{equation*}
\kappa^{*} \mu(d \xi \mid \lambda)=\frac{1}{(2 \pi)^{g}}\left[\frac{d \theta_{1} \wedge \cdots \wedge d \theta_{g}}{d \boldsymbol{F}}\right]_{V_{2}} /|\alpha(\xi \mid \lambda+i 0)|^{2} . \tag{3.5}
\end{equation*}
$$

The formula of eigenfunction expansion can be stated as follows ([3]):
Theorem 2. The spectral kernel $d \theta\left(\gamma, \gamma^{\prime} \mid \lambda\right)$ is absolutely continuous for $\lambda \in[-1,1]$ and has the expression

$$
\begin{equation*}
d \theta\left(\gamma, \gamma^{\prime} \mid \lambda\right)=K(\gamma, \xi \mid \lambda+i 0) K\left(\gamma^{\prime}, \xi \mid \lambda-i 0\right) \cdot \mu(d \xi \mid \lambda) d \lambda . \tag{3.6}
\end{equation*}
$$

The support of $\mu(d \xi \mid \lambda)$ coincides with the image of the Gauss map κ from $V_{\lambda} \cap \boldsymbol{R}^{g}$. Morse Theory shows that κ is not necessarily bijective unless $\max _{j}\left(1-4 p_{j}\right)<|\lambda|<1$.

References

[1] K. Aomoto: J. Math. Soc. Japan, 27, 248-255 (1975).
[2] -: Sci. Papers, Coll. Gen. Ed, Univ. of Tokyo, 37, 49-61 (1977).
[3] -: Proc. Japan Acad., 61A, 11-14 (1985).
[4] M. G. Krein: Topics in Differential and Integral Equation and Operator Theory. Birkhauser (1983).
[5] B. Malgrange: Ann. Scient. Éc. Norm. Sup., 7, 405-430 (1974).
[6] E. W. Montroll and B. J. West: On an enriched collection of stochastic processes. Fluctuation Phenomena, edited by E. W. Montroll and J. L. Lebowitz. NorthHolland, pp. 61-175 (1979).
[7] C. H. Wilcox: Lect. Notes in Math., vol. 442, Springer (1975).

