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It is well-known that Kummer created "ideal complex numbers" in
order to save the unique factorization into prime factors ([4], [3]). In
modern terminology, they were the valuations in the cyclotomic field: Ce
que fair Kummer revient exactement, en langage moderne, definir les
valuations sur corps cyclotomiques (Bourbaki [1], p. 122).

In the present paper, we shall show that Kummer’s idea can be directly
used to prove the fundamental theorem on the extension of valuations, in
even simpler way than in usual proofs, if we invoke a conception of
Dedekind presented in the supplements to the second edition of Dirichlet’s
Vorlesungen iber Zahlentheorie [2].

We mean by a valuation a discrete normed exponential valuation. Let
K be a field, v a valuation of K, A the valuation ring of v and a uni-
formizer of v"

A ={x( e K) [v(x)_0}, and v() 1.

First lemma. Notations being as above, let L be a finite (not neces-
sarily separable) extension of the field K, and B the integral closure of A
in L. Suppose that an element of B have the two following properties:

(1) ----0 (mod z),
(2) If for and of B we have afl@=__O (mod z), then we have _0

(mod z) or fl@---- 0 (mod z).
Then there exists an extension of V of v to L such that V(z)---V(@)+ 1.
Here, and in what follows, a----0 (mod ) for a e B means a----0 (mod uB),

namely, a/z e B.
For the proof, we follow Edwards [3], which is extracted from

Dedekind [2]. But we must treat also the case where the field L is insepa-
rable over K. First we show that the ring B is completely integrally
closed. Suppose that be a non-zero element of B and a an element of L
such that a e B for any non-negative integer n. There exists a positive
integer q such that the set Lq--(xq; x e L} is contained in the separable
closure L, of K in L. Then qaq e B--L, B for any non-negative n. The
ring B is Noetherian, since the ring A is Noetherian and B is the integral
closure of A in the separable extension L over K. Therefore B, is com-
pletely integrally closed, since it is an integrally closed Noetherian ring.
Hence aq e ,_B. This implies a e B, since B is integrally closed. Thus,
as / e B, we have shown that for any non-zero element of B there exists
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a non-negative integer n such that (ql) e B but (q/z)+’ e B. Next we
show that such a number n is uniquely determined. In order to do this,
it suffices to show that if e B, then e B for any non-negative integer
m (<n). In fact ()=-($)e B. Hence e B, since B is inte-
grally closed.

We designate this uniquely determined number n or by V(). Par-
ticularly we put V(0)-oo. We can extend the map V of the ring B to
non-negative integers, augmented by oo, to the map of the field L to the
rational integers, augmented by oo. The map V has the following proper-
ties, whose proof is routine"

v() v()+ v(),
V(o+ )/> Min {V(r), V()},

and
V(=) V(q)+ 1.

Remark that the requirement (2) in the statement of the lemma is
used to prove the first equality above. From the last equality above we
have V(/q)=l, which implies that the map V is surjective. This com-
pletes the proof.

If for an extension V of a valuation v in K to L there exists q which
satisfies the requirements (1) and (2), we say that V is a good extension
of the valuation v. This is a temporary term, since we shall soon find
that all extensions are good.

We give a characterization of q with the properties (1) and (2) as
follows"

Second lemma. Notations being as in First lemma, suppose that
be an element of B. Denote the image of Bq by the natural mapping of
B onto. B=Blab by B" Bq={xq modB x e B}. Then q satisfies the
requirements (1) and (2) in First lemma, if and only if the ideal Bq is
minimal in B.

Proof. Let be a minimal ideal in/. Then clearly is a principal
ideal. Hence there exists an element q of B such that -Bq. This
satisfies the requirements (1) and (2). In fact, let and/ be two elements
f B, and assume that q_0 (mode) and q0 (mode). Put q’=q.
Then we have {}GBq’Bq. Since Bq is minimal, we have Bq’-Bq.
Hence there exists of B such that q----7q’ (mod ). Hence we have

t7q’---- 7tq---- 0 (mod ).
Conversely, let q be an element of B which satisfies the requirements

(1) and (2). Suppose that q’ be an element of B such that Bq’Bq.
Then there exists an element of B such that q’----q (mod ). Consider
the homomorphism f of Bq onto B@’ defined by f(q)=q’. Since dimz
>dimz Bq’, where =A/=A, we have an element / of B such that/-=/=
but f(qD-. Then tq----0 (mod z) but tq0 (rood ). From the assump-
tion we get Cq----0 (mod =). Therefore we have Bq’={)}. This proves that
Bq is a minimal ideal.
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From the two lemmas above we find the following" Given an element
of B which is not divisible by , there exists a good extension of v to L

such that V()V(). In fact, take such that the ideal B is contained
in B and minimal. The element determines a desired valuation.

The following is the fundamental theorem about the extension of a
valuation, which we prove by the use of the preceding lemmas

Theorem. Any valuation v o.f the field K can be extended to any finite
extension L o.f K. If L has the degree n over K, the valuation v has at
most n extensions to L. Moreover, if V1, ..., V deno.te all the extensions
of v to L, and B1, ..., B their valuation rings, then we have

B=(-q B,
=1

where B is the integral closure of the valuation ring A of v in L.
Proof. We shall first prove that the valuation v has at least one and

at most n good extensions in the field L, and that if V, ..., V are all the
good extensions of v in the field L, and B, ..., B their valuation rings,
then

B=B.
j--1

Consider the vector space B=B/rcB over the field ]=A/rcA. Let
be a finite family of elements of B which are linearly independent over A.
If we had a non-trivial linear relation ax=O with a in K, we could
suppose that all the a are in A, and furthermore, by dividing them by a
suitable power of , we could also suppose that they are not all divisible
by ; thus, by reducing the relation ax=O, we would get a non-trivial
relation ax==_O (rood ), with a in A; this is a contradiction. There-
fore the elements x are linearly independent over K. This implies that

dima Bn. (The equality holds, if L is a separable extension over K, since
B is a free A-module of rank n.) Therefore B has minimum condition on
ideals, so. B has at least one and at most n minimal ideals, since the sum
of minimal ideals in B is a direct sum.

Next suppose that V, ..-, V, be all the good extensions of v in L,
and that B,..., B be their valuation rings. Since it is obvious that
B__(’q=t/, we have only to show the converse. Suppose e B. Since L
is the quotient field of B, and a finite extension of K, we can write c=(//a),
a e A, e B. If v(a)=O, then c e B, which contradicts the assumption.
Hence v(a)>O. Therefore we may assume that/3 is not divisible by . By
the remark preceding the statement of the theorem., we can conclude that
there is a good extension V of v such that V(c)<0.

Now we shall show that any extension of v is good. Let V be any
extension of v in L which is not good. The independence of valuations
tells the existence of an element x of L such that V(x)>O (]=1, ..., m)
and V(x)<0. From the first we have x e B, while from the latter we have
x e B, since any element which is integral over the valuation ring A in the
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finite extension is contained in the valuation ring of any extension of the
valuation. This is a contradiction, which completes the proof of the theo-
rem. We have also the following corollary:

Corollar$. Any extension of a valuation of a field to a finite extension
is a good valuation.
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